PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
2.  Functional Genomic and Advanced Genetic Studies Reveal Novel Insights into the Metabolism, Regulation, and Biology of Haloferax volcanii 
Archaea  2011;2011:602408.
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.
doi:10.1155/2011/602408
PMCID: PMC3235422  PMID: 22190865
3.  Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures 
Archaea  2011;2011:565127.
Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases.
doi:10.1155/2011/565127
PMCID: PMC3227228  PMID: 22162664
4.  Assembly of the Complex between Archaeal RNase P Proteins RPP30 and Pop5 
Archaea  2011;2011:891531.
RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis.
doi:10.1155/2011/891531
PMCID: PMC3227427  PMID: 22162665
5.  Regulatory Multidimensionality of Gas Vesicle Biogenesis in Halobacterium salinarum NRC-1 
Archaea  2011;2011:716456.
It is becoming clear that the regulation of gas vesicle biogenesis in Halobacterium salinarum NRC-1 is multifaceted and appears to integrate environmental and metabolic cues at both the transcriptional and posttranscriptional levels. The mechanistic details underlying this process, however, remain unclear. In this manuscript, we quantify the contribution of light scattering made by both intracellular and released gas vesicles isolated from Halobacterium salinarum NRC-1, demonstrating that each form can lead to distinct features in growth curves determined by optical density measured at 600 nm (OD600). In the course of the study, we also demonstrate the sensitivity of gas vesicle accumulation in Halobacterium salinarum NRC-1 on small differences in growth conditions and reevaluate published works in the context of our results to present a hypothesis regarding the roles of the general transcription factor tbpD and the TCA cycle enzyme aconitase on the regulation of gas vesicle biogenesis.
doi:10.1155/2011/716456
PMCID: PMC3202098  PMID: 22110395
6.  Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea 
Archaea  2011;2011:693253.
Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.
doi:10.1155/2011/693253
PMCID: PMC3191746  PMID: 22007151
7.  Widespread Disulfide Bonding in Proteins from Thermophilic Archaea 
Archaea  2011;2011:409156.
Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.
doi:10.1155/2011/409156
PMCID: PMC3177088  PMID: 21941460
8.  Establishing a Markerless Genetic Exchange System for Methanosarcina mazei Strain Gö1 for Constructing Chromosomal Mutants of Small RNA Genes 
Archaea  2011;2011:439608.
A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP). The nonreplicating allelic exchange vector (pRS345) carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA154. Characterizing M. mazeiΔsRNA154 under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA154 in regulation of nitrogen fixation by posttranscriptional regulation.
doi:10.1155/2011/439608
PMCID: PMC3177094  PMID: 21941461
9.  Characterization of Plasmid pPO1 from the Hyperacidophile Picrophilus oshimae 
Archaea  2011;2011:723604.
Picrophilus oshimae and Picrophilus torridus are free-living, moderately thermophilic and acidophilic organisms from the lineage of Euryarchaeota. With a pH optimum of growth at pH 0.7 and the ability to even withstand molar concentrations of sulphuric acid, these organisms represent the most extreme acidophiles known. So far, nothing is known about plasmid biology in these hyperacidophiles. Also, there are no genetic tools available for this genus. We have mobilized the 7.6 Kbp plasmid from P. oshimae in E. coli by introducing origin-containing transposons and described the plasmid in terms of its nucleotide sequence, copy number in the native host, mode of replication, and transcriptional start sites of the encoded ORFs. Plasmid pPO1 may encode a restriction/modification system in addition to its replication functions. The information gained from the pPO1 plasmid may prove useful in developing a cloning system for this group of extreme acidophiles.
doi:10.1155/2011/723604
PMCID: PMC3177234  PMID: 21941462
10.  Sulfolobus Mutants, Generated via PCR Products, Which Lack Putative Enzymes of UV Photoproduct Repair 
Archaea  2011;2011:864015.
In order to determine the biological relevance of two S. acidocaldarius proteins to the repair of UV photoproducts, the corresponding genes (Saci_1227 and Saci_1096) were disrupted, and the phenotypes of the resulting mutants were examined by various genetic assays. The disruption used integration by homologous recombination of a functional but heterologous pyrE gene, promoted by short sequences attached to both ends via PCR. The phenotypic analyses of the disruptants confirmed that ORF Saci_1227 encodes a DNA photolyase which functions in vivo, but they could not implicate ORF Saci_1096 in repair of UV- or other externally induced DNA damage despite its similarity to genes encoding UV damage endonucleases. The success of the gene-disruption strategy, which used 5′ extensions of PCR primers to target cassette integration, suggests potential advantages for routine construction of Sulfolobus strains.
doi:10.1155/2011/864015
PMCID: PMC3139894  PMID: 21785574
11.  More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus 
Archaea  2011;2011:973848.
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
doi:10.1155/2011/973848
PMCID: PMC3087415  PMID: 21559116
12.  Hot Transcriptomics 
Archaea  2011;2010:897585.
DNA microarray technology allows for a quick and easy comparison of complete transcriptomes, resulting in improved molecular insight in fluctuations of gene expression. After emergence of the microarray technology about a decade ago, the technique has now matured and has become routine in many molecular biology laboratories. Numerous studies have been performed that have provided global transcription patterns of many organisms under a wide range of conditions. Initially, implementation of this high-throughput technology has lead to high expectations for ground breaking discoveries. Here an evaluation is performed of the insight that transcriptome analysis has brought about in the field of hyperthermophilic archaea. The examples that will be discussed have been selected on the basis of their impact, in terms of either biological insight or technological progress.
doi:10.1155/2010/897585
PMCID: PMC3038420  PMID: 21350598

Results 1-12 (12)