Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes 
Archaea  2004;1(5):347-352.
A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP), the ribulose monophosphate (RuMP) pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium) produce ribose-5-phosphate via the nonoxidative PPP (NOPPP), whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1) lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP), the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P) among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii) probably does not synthesize aromatic amino acids at all.
PMCID: PMC2685555  PMID: 15876568
aromatic amino acid biosynthesis; chorismate; genomic analysis; nucleotide biosynthesis; pentose phosphate pathway; ribulose-5-phosphate; transketolase
2.  Transaldolase of Methanocaldococcus jannaschii  
Archaea  2004;1(4):255-262.
The Methanocaldococcus jannaschii genome contains putative genes for all four nonoxidative pentose phosphate pathway enzymes. Open reading frame (ORF) MJ0960 is a member of the mipB/talC family of ‘transaldolase-like’ genes, so named because of their similarity to the well-characterized transaldolase B gene family. However, recently, it has been reported that both the mipB and the talC genes from Escherichia coli encode novel enzymes with fructose-6-phosphate aldolase activity, not transaldolase activity (Schürmann and Sprenger 2001). The same study reports that other members of the mipB/talC family appear to encode transaldolases. To confirm the function of MJ0960 and to clarify the presence of a nonoxidative pentose phosphate pathway in M. jannaschii, we have cloned ORF MJ0960 from M. jannaschii genomic DNA and purified the recombinant protein. MJ0960 encodes a transaldolase and displays no fructose-6-phosphate aldolase activity. It retained full activity for 4 h at 80 °C, and for 3 weeks at 25 °C. Methanocaldococcus jannaschii transaldolase has a maximal velocity (Vmax) of 1.0 ± 0.2 µmol min–1 mg–1 at 25 °C, whereas Vmax = 12.0 ± 0.5 µmol min–1 mg–1 at 50 °C. Apparent Michaelis constants at 50 °C were Km = 0.65 ± 0.09 mM for fructose-6-phosphate and Km = 27.8 ± 4.3 µM for erythrose-4-phosphate. When ribose-5-phosphate replaced erythrose-4-phosphate as an aldose acceptor, Vmax decreased twofold, whereas the Km was 150-fold higher. The molecular mass of the active enzyme is 271 ± 27 kDa as estimated by gel filtration, whereas the predicted monomer size is 23.96 kDa, suggesting that the native form of the protein is probably a decamer. A readily available source of thermophilic pentose phosphate pathway enzymes including transaldolase may have direct application in enzymatic biohydrogen production.
PMCID: PMC2685571  PMID: 15810435
biohydrogen; fructose-6-phosphate aldolase; fsa; mipB; pentose phosphate pathway; talC

Results 1-2 (2)