PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Development of β-Lactamase as a Tool for Monitoring Conditional Gene Expression by a Tetracycline-Riboswitch in Methanosarcina acetivorans 
Archaea  2014;2014:725610.
The use of reporter gene fusions to assess cellular processes such as protein targeting and regulation of transcription or translation is established technology in archaeal, bacterial, and eukaryal genetics. Fluorescent proteins or enzymes resulting in chromogenic substrate turnover, like β-galactosidase, have been particularly useful for microscopic and screening purposes. However, application of such methodology is of limited use for strictly anaerobic organisms due to the requirement of molecular oxygen for chromophore formation or color development. We have developed β-lactamase from Escherichia coli (encoded by bla) in conjunction with the chromogenic substrate nitrocefin into a reporter system usable under anaerobic conditions for the methanogenic archaeon Methanosarcina acetivorans. By using a signal peptide of a putative flagellin from M. acetivorans and different catabolic promoters, we could demonstrate growth substrate-dependent secretion of β-lactamase, facilitating its use in colony screening on agar plates. Furthermore, a series of fusions comprised of a constitutive promoter and sequences encoding variants of the synthetic tetracycline-responsive riboswitch (tc-RS) was created to characterize its influence on translation initiation in M. acetivorans. One tc-RS variant resulted in more than 11-fold tetracycline-dependent regulation of bla expression, which is in the range of regulation by naturally occurring riboswitches. Thus, tc-RS fusions represent the first solely cis-active, that is, factor-independent system for controlled gene expression in Archaea.
doi:10.1155/2014/725610
PMCID: PMC3942078  PMID: 24678266
2.  Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea 
Archaea  2010;2010:453642.
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
doi:10.1155/2010/453642
PMCID: PMC2933860  PMID: 20847933
3.  New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species 
Archaea  2008;2(3):193-203.
A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri PmcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR-regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.
PMCID: PMC2685592  PMID: 19054746
genetics; site-specific recombination; tetR; essential gene

Results 1-3 (3)