PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii 
Archaea  2010;2010:481725.
Proteasomes are composed of 20S core particles (CPs) of α- and β-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α1 and α2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α1 Thr147, α2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α1, thus, revealing a new type of proteasomal modification. Probing the biological role of α1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α1. The α1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.
doi:10.1155/2010/481725
PMCID: PMC2910475  PMID: 20671954
2.  Recombinant production of Zymomonas mobilis pyruvatedecarboxylase in the haloarchaeon Haloferax volcanii  
Archaea  2004;1(5):327-334.
The unusual physiological properties of archaea (e.g., growth in extreme salt concentration, temperature and pH) make them ideal platforms for metabolic engineering. Towards the ultimate goal of modifying an archaeon to produce bioethanol or other useful products, the pyruvate decarboxylase gene of Zymomonas mobilis (Zm pdc) was expressed in Haloferax volcanii. This gene has been used successfully to channel pyruvate to ethanol in various Gram-negative bacteria, including Escherichia coli. Although the ionic strength of the H. volcanii cytosol differs over 15-fold from that of E. coli, gel filtration and circular dichroism revealed no difference in secondary structure between the ZmPDC protein isolated from either of these hosts. Like the E. coli purified enzyme, ZmPDC from H. volcanii catalyzed the nonoxidative decarboxylation of pyruvate. A decrease in the amount of soluble ZmPDC protein was detected as H. volcanii transitioned from log phase to late stationary phase that was inversely proportional to the amount of pdc-specific mRNA. Based on these results, proteins from non-halophilic organisms can be actively synthesized in haloarchaea; however, post-transcriptional mechanisms present in stationary phase appear to limit the amount of recombinant protein expressed.
PMCID: PMC2685553  PMID: 15876566
biotechnology; ethanol; halophile; metabolism; molecular biology; recombinant protein

Results 1-2 (2)