PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Development of a 3D Tissue Culture–Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases 
Journal of Biomolecular Screening  2016;21(9):912-922.
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.
doi:10.1177/1087057116657269
PMCID: PMC5030728  PMID: 27412535
3D tissue culture; high-content screening; phenotypic profiling; c-Met; EGFR
2.  A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics from Induced Pluripotent Stem Cell Live Imaging Data 
Journal of Biomolecular Screening  2016;21(9):887-896.
Most image analysis pipelines rely on multiple channels per image with subcellular reference points for cell segmentation. Single-channel phase-contrast images are often problematic, especially for cells with unfavorable morphology, such as induced pluripotent stem cells (iPSCs). Live imaging poses a further challenge, because of the introduction of the dimension of time. Evaluations cannot be easily integrated with other biological data sets including analysis of endpoint images. Here, we present a workflow that incorporates a novel CellProfiler-based image analysis pipeline enabling segmentation of single-channel images with a robust R-based software solution to reduce the dimension of time to a single data point. These two packages combined allow robust segmentation of iPSCs solely on phase-contrast single-channel images and enable live imaging data to be easily integrated to endpoint data sets while retaining the dynamics of cellular responses. The described workflow facilitates characterization of the response of live-imaged iPSCs to external stimuli and definition of cell line–specific, phenotypic signatures. We present an efficient tool set for automated high-content analysis suitable for cells with challenging morphology. This approach has potentially widespread applications for human pluripotent stem cells and other cell types.
doi:10.1177/1087057116652064
PMCID: PMC5030730  PMID: 27256155
live imaging; CellProfiler; HipDynamics; iPSC; high-content screening
3.  Erratum 
Journal of Biomolecular Screening  2010;15(9):478-487.
doi:10.1177/1087057110386725
PMCID: PMC4979248
4.  An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery 
Journal of Biomolecular Screening  2015;21(4):414-421.
Fragment-based lead discovery has proved to be an effective alternative to high-throughput screenings in identifying chemical matter that can be developed into robust lead compounds. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding can be challenging due to the physicochemical properties of fragments. In order to minimize the time and costs of screening, optimal combinations of biophysical techniques with maximal information content, sensitivity, and robustness are needed. Here we describe an approach utilizing automated microscale thermophoresis (MST) affinity screening to identify fragments active against MEK1 kinase. MST identified multiple hits that were confirmed by X-ray crystallography but not detected by orthogonal methods. Furthermore, MST also provided information about ligand-induced aggregation and protein denaturation. The technique delivered a large number of binders while reducing experimentation time and sample consumption, demonstrating the potential of MST to execute and maximize the efficacy of fragment screening campaigns.
doi:10.1177/1087057115618347
PMCID: PMC4800460  PMID: 26637553
binding affinity; biophysical screening; drug discovery; protein aggregation; surface plasmon resonance
5.  New DAG and cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories 
Journal of Biomolecular Screening  2015;21(3):298-305.
Protein-based, fluorescent biosensors power basic research on cell signaling in health and disease, but their use in automated laboratories is limited. We have now created two live-cell assays, one for diacyl glycerol and another for cAMP, that are robust (Z′ > 0.7) and easily deployed on standard fluorescence plate readers. We describe the development of these assays, focusing on the parameters that were critical for optimization, in the hopes that the lessons learned can be generalized to the development of new biosensor-based assays.
doi:10.1177/1087057115618608
PMCID: PMC4766961  PMID: 26657040
fluorescence; baculovirus; mNeonGreen; GFP; Z′ statistic; live-cell assay; adenylyl cyclase; cAMP; diacyl glycerol; DAG
6.  High-Throughput Screening for Internalizing Antibodies by Homogeneous Fluorescence Imaging of a pH-Activated Probe 
Antibody-drug conjugates (ADCs) represent a rapidly growing class of biotherapeutics that deliver drugs specifically to target cells by binding of the antibody component to surface receptors. The majority of ADCs require receptor internalization depending on intrinsic features of the specific ADC-antigen interaction. The development of potent ADCs would greatly benefit from the identification of efficiently internalizing antibodies at early stages of discovery. We developed a highly sensitive and rapid antibody internalization assay using an indirect Cypher5E label. The pH-activated CypHer5E label becomes fluorescent upon internalization into the acidic environment of endocytic organelles, whereas background fluorescence of noninternalized CypHer5E is minimal. The pH-dependency of the CypHer5E signal enables robust discrimination of antibody internalization from surface binding. The favorable signal-over-background ratio allows a homogeneous assay design with high-throughput fluorescence imaging in 384- and 1536-well formats. The biophysical readout of the primary internalization event substantially shortens incubation times compared to killing assays using toxin internalization. The assay was validated with tumor-relevant targets, including receptor tyrosine kinases (EGFR and HER2) and a class II cytokine receptor (TF) expressed by A431, AU565, and SKOV-3 cells and transient expression systems (CHO-S). Our method enables functional screening of large antibody libraries to identify therapeutic antibody candidates with internalization characteristics favorable for the development of ADCs.
doi:10.1177/1087057115613270
PMCID: PMC4708616  PMID: 26518032
antibody-drug conjugates; antibody internalization; pH-dependent dye; homogenous assay; high-throughput screening
7.  Understanding ForteBio’s Sensors for High-Throughput Kinetic and Epitope Screening for Purified Antibodies and Yeast Culture Supernatant 
Real-time and label-free antibody screening systems are becoming more popular because of the increasing output of purified antibodies and antibody supernatant from many antibody discovery platforms. However, the properties of the biosensor can greatly affect the kinetic and epitope binning results generated by these label-free screening systems. ForteBio human-specific ProA, anti-human IgG quantitation (AHQ), anti-human Fc capture (AHC) sensors, and custom biotinylated-anti-human Fc capture (b-AHFc) sensors were evaluated in terms of loading ability, regeneration, kinetic characterization, and epitope binning with both purified IgG and IgG supernatant. AHC sensors proved unreliable for kinetic or binning assays at times, whereas AHQ sensors showed poor loading and regeneration abilities. ProA sensors worked well with both purified IgG and IgG supernatant. However, the interaction between ProA sensors and the Fab region of the IgG with VH3 germline limited the application of ProA sensors, especially in the epitope binning experiment. In an attempt to generate a biosensor type that would be compatible with a variety of germlines and sample types, we found that the custom b-AHFc sensors appeared to be robust working with both purified IgG and IgG supernatant, with little evidence of sensor-related artifacts.
doi:10.1177/1087057115609564
PMCID: PMC4708621  PMID: 26442912
high-throughput screening; kinetic; epitope binning; supernatant
8.  Screening for Small-Molecule Modulators of Long Noncoding RNA-Protein Interactions Using AlphaScreen 
Journal of Biomolecular Screening  2015;20(9):1132-1141.
Long non–protein coding RNAs (lncRNAs) are an important class of molecules that help orchestrate key cellular events. Although their functional roles in cells are not well understood, thousands of lncRNAs and a number of possible mechanisms by which they act have been reported. LncRNAs can exert their regulatory function in cells by interacting with epigenetic enzymes. In this study, we developed a tool to study lncRNA-protein interactions for high-throughput screening of small-molecule modulators using AlphaScreen technology. We tested the interaction of two lncRNAs: brain-derived neurotrophic factor antisense (BDNF-AS) and Hox transcript antisense RNA (HOTAIR), with Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase against a phytochemical library, to look for small-molecule inhibitors that can alter the expression of downstream target genes. We identified ellipticine, a compound that up-regulates BDNF transcription. Our study shows the feasibility of using high-throughput screening to identify modulators of lncRNA-protein interactions and paves the road for targeting lncRNAs that are dysregulated in human disorders using small-molecule therapies.
doi:10.1177/1087057115594187
PMCID: PMC4576503  PMID: 26173710
long noncoding RNA; brain-derived neurotrophic factor (BDNF); brain-derived neurotrophic factor antisense (BDNFAS); Enhancer of zeste homolog 2 (EZH2); hox transcript antisense RNA (HOTAIR); epigenetic enzyme; RNA protein interaction; AlphaScreen; natural antisense transcript; noncoding RNA
9.  Positive Modulation of the Glycine Receptor by Means of Glycine Receptor–Binding Aptamers 
Journal of Biomolecular Screening  2015;20(9):1112-1123.
According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators.
doi:10.1177/1087057115590575
PMCID: PMC4576506  PMID: 26071243
glycine receptor; aptamer; surface plasmon resonance; fluorescent membrane potential; patch-clamp electrophysiology
10.  Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets 
Journal of Biomolecular Screening  2015;20(9):1055-1073.
Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators.
doi:10.1177/1087057115601677
PMCID: PMC4576507  PMID: 26303307
K+ channels; ion channels; channelopathies; cardiac; neuronal; vascular; drug development; review
11.  Novel Scaffolds of Cell-Active Histone Demethylase Inhibitors Identified from High-Throughput Screening 
Journal of Biomolecular Screening  2015;20(6):821-827.
Jumonji C domain-containing histone demethylases (JHDMs) are epigenetic proteins capable of demethylating methylated lysine residues on histones proteins and for which high-quality chemical probes and eventual therapeutic leads are highly desirable. To expand the extent of known scaffolds targeting JHDMs, we initiated an unbiased high-throughput screening approach using a fluorescence polarization (FP)–based competitive binding assay we recently reported for JHDM1A (aka KDM2A). In total, 14,400 compounds in the HitFinder collection v.11 were screened, which represent all the distinct skeletons of the Maybridge Library. An eventual three compounds with two new scaffolds were discovered and further validated, which not only show in vitro binding for two different JHDMs, JHDM1A and JMJD2A (aka KDM4A), but also induce hypermethylation of their substrate in cells. These represent novel scaffolds as JHDM inhibitors and provide a basis for future optimization of affinity and selectivity.
doi:10.1177/1087057115579637
PMCID: PMC4475453  PMID: 25883088
epigenetics; fluorescence polarization competition assay (FPCA); Jumonji C domain-containing histone demethylase (JHDM); immunofluorescence; high-throughput screening (HTS)
12.  A Quantitative Microtiter Assay for Sialylated Glycoform Analyses Using Lectin Complexes 
Journal of Biomolecular Screening  2015;20(6):768-778.
Fidelity of glycan structures is a key requirement for biotherapeutics, with carbohydrates playing an important role for therapeutic efficacy. Comprehensive glycan profiling techniques such as liquid chromatography (LC) and mass spectrometry (MS), while providing detailed description of glycan structures, require glycan cleavage, labeling, and paradigms to deconvolute the considerable data sets they generate. On the other hand, lectins as probes on microarrays have recently been used in orthogonal approaches for in situ glycoprofiling but require analyte labeling to take advantage of the capabilities of automated microarray readers and data analysis they afford. Herein, we describe a lectin-based microtiter assay (lectin–enzyme-linked immunosorbent assay [ELISA]) to quantify terminal glycan moieties, applicable to in vitro and in-cell glycan-engineered Fc proteins as well as intact IgGs from intravenous immunoglobulin (IVIG), a blood product containing pooled polyvalent IgG antibodies extracted from plasma from healthy human donors. We corroborate our findings with industry-standard LC-MS profiling. This “customizable” ELISA juxtaposes readouts from multiple lectins, focusing on a subset of glycoforms, and provides the ability to discern single- versus dual-arm glycosylation while defining levels of epitopes at sensitivities comparable to MS. Extendable to other biologics, this ELISA can be used stand-alone or complementary to MS for quantitative glycan analysis.
doi:10.1177/1087057115577597
PMCID: PMC4512520  PMID: 25851037
lectin; ELISA; glycoform; IVIG; sialylation
13.  A Combination of Screening and Computational Approaches for the Identification of Novel Compounds That Decrease Mast Cell Degranulation 
Journal of Biomolecular Screening  2015;20(6):720-728.
High-content screening of compound libraries poses various challenges in the early steps in drug discovery such as gaining insights into the mode of action of the selected compounds. Here, we addressed these challenges by integrating two biological screens through bioinformatics and computational analysis. We screened a small-molecule library enriched in amphiphilic compounds in a degranulation assay in rat basophilic leukemia 2H3 (RBL-2H3) cells. The same library was rescreened in a high-content image-based endocytosis assay in HeLa cells. This assay was previously applied to a genome-wide RNAi screen that produced quantitative multiparametric phenotypic profiles for genes that directly or indirectly affect endocytosis. By correlating the endocytic profiles of the compounds with the genome-wide siRNA profiles, we identified candidate pathways that may be inhibited by the compounds. Among these, we focused on the Akt pathway and validated its inhibition in HeLa and RBL-2H3 cells. We further showed that the compounds inhibited the translocation of the Akt-PH domain to the plasma membrane. The approach performed here can be used to integrate chemical and functional genomics screens for investigating the mechanism of action of compounds.
doi:10.1177/1087057115579613
PMCID: PMC4512528  PMID: 25838434
mast cell; phosphorylation; Akt; screening
14.  CHO-S Antibody Titers >1 Gram/Liter Using Flow Electroporation-Mediated Transient Gene Expression followed by Rapid Migration to High-Yield Stable Cell Lines 
Journal of Biomolecular Screening  2015;20(4):545-551.
In recent years, researchers have turned to transient gene expression (TGE) as an alternative to CHO stable cell line generation for early-stage antibody development. Despite advances in transfection methods and culture optimization, the majority of CHO-based TGE systems produce insufficient antibody titers for extensive use within biotherapeutic development pipelines. Flow electroporation using the MaxCyte STX Scalable Transfection System is a highly efficient, scalable means of CHO-based TGE for gram-level production of antibodies without the need for specialized expression vectors or genetically engineered CHO cell lines. CHO cell flow electroporation is easily scaled from milligram to multigram quantities without protocol reoptimization while maintaining transfection performance and antibody productivity. In this article, data are presented that demonstrate the reproducibility, scalability, and antibody production capabilities of CHO-based TGE using the MaxCyte STX. Data show optimization of posttransfection parameters such as cell density, media composition, and feed strategy that result in secreted antibody titers >1 g/L and production of multiple grams of antibody within 2 weeks of a single CHO-S cell transfection. In addition, data are presented to demonstrate the application of scalable electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early- and late-stage antibody development activities.
doi:10.1177/1087057114563494
PMCID: PMC4512034  PMID: 25520372
transient gene expression; antibody production; flow electroporation; scalable CHO cell transfection; stable cell lines
15.  Phenotypic Approaches to Identify Inhibitors of B Cell Activation 
Journal of Biomolecular Screening  2015;20(7):876-886.
An EPIC label-free phenotypic platform was developed to explore B cell receptor (BCR) and CD40R-mediated B cell activation. The phenotypic assay measured the association of RL non-Hodgkin’s lymphoma B cells expressing lymphocyte function-associated antigen 1 (LFA-1) to intercellular adhesion molecule 1 (ICAM-1)-coated EPIC plates. Anti-IgM (immunoglobulin M) mediated BCR activation elicited a response that was blocked by LFA-1/ICAM-1 specific inhibitors and a panel of Bruton’s tyrosine kinase (BTK) inhibitors. LFA-1/ICAM-1 association was further increased on coapplication of anti-IgM and mega CD40L when compared to individual application of either. Anti-IgM, mega CD40L, or the combination of both displayed distinct kinetic profiles that were inhibited by treatment with a BTK inhibitor. We also established a FLIPR-based assay to measure B cell activation in Ramos Burkitt’s lymphoma B cells and an RL cell line. Anti-IgM-mediated BCR activation elicited a robust calcium response that was inhibited by a panel of BTK inhibitors. Conversely, CD40R activation did not elicit a calcium response in the FLIPR assay. Compared to the FLIPR, the EPIC assay has the propensity to identify inhibitors of both BCR and CD40R-mediated B cell activation and may provide more pharmacological depth or novel mechanisms of action for inhibition of B cell activation.
doi:10.1177/1087057115585724
PMCID: PMC4512518  PMID: 25948491
label free; EPIC; FLIPR; calcium flux; LFA-1/ICAM-1 adhesion
16.  A Multiplexed Cell-Based Assay for the Identification of Modulators of Pre-Membrane Processing as a Target against Dengue Virus 
Journal of Biomolecular Screening  2015;20(5):616-626.
The DenV pre-membrane protein (prM) is a crucial chaperone for the viral envelope protein, preventing premature fusion with vesicles during viral export. prM molecules in immature particles are cleaved by host proteases, leading to mature fusogenic virions. Blockade of prM cleavage would restrict fusion and represents a novel druggable opportunity against DenV. We have thus established a cell-based platform to monitor prM processing that relies on an engineered two-tag scaffold that travels to the cell surface through the secretory pathway. The assay discriminates between a single cell-surface tag when prM is cleaved and two tags when it is not, as detected through fluorescent-coupled antibodies by flow cytometry. The assay, miniaturized into a 96-well plate format, was multiplexed with the HIV-1 envelope boundary, also cleaved in the same pathway. A pilot screen against 1280 compounds was executed, leading to the identification of a potential active and corroborating the robustness of our assay for large-scale screening. We describe for the first time a cell-based assay that monitors DenV prM processing within the classical secretory pathway, which was exploited to identify a potential novel drug against DenV.
doi:10.1177/1087057115571247
PMCID: PMC4438100  PMID: 25724189
dengue virus; high-throughput screen; cell-based assay; multiplexing; prM processing
17.  A New Experimental Model for Assessing Drug Efficacy against Trypanosoma cruzi Infection Based on Highly Sensitive In Vivo Imaging 
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, one of the world’s major neglected infections. Although development of improved antiparasitic drugs is considered a priority, there have been no significant treatment advances in the past 40 years. Factors that have limited progress include an incomplete understanding of pathogenesis, tissue tropism, and disease progression. In addition, in vivo models, which allow parasite burdens to be tracked throughout the chronic stage of infection, have been lacking. To address these issues, we have developed a highly sensitive in vivo imaging system based on bioluminescent T. cruzi, which express a red-shifted luciferase that emits light in the tissue-penetrating orange-red region of the spectrum. The exquisite sensitivity of this noninvasive murine model has been exploited to monitor parasite burden in real time throughout the chronic stage, has allowed the identification of the gastrointestinal tract as the major niche of long-term infection, and has demonstrated that chagasic heart disease can develop in the absence of locally persistent parasites. Here, we review the parameters of the imaging system and describe how this experimental model can be incorporated into drug development programs as a valuable tool for assessing efficacy against both acute and chronic T. cruzi infections.
doi:10.1177/1087057114552623
PMCID: PMC4361455  PMID: 25296657
Chagas disease; trypanosomes; drugs; imaging
18.  A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes 
Journal of Biomolecular Screening  2015;20(3):330-340.
The emergence of human stem cell–derived cardiomyocyte (hSCCM)–based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling “fingerprint” in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca2+ signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework.
doi:10.1177/1087057114557232
PMCID: PMC4361473  PMID: 25367900
calcium signaling; cell imaging; human; cardiac; stem cells; drug discovery
19.  Quantification of Histone H3 Lys27 Trimethylation (H3K27me3) by High-Throughput Microscopy Enables Cellular Large-Scale Screening for Small-Molecule EZH2 Inhibitors 
Journal of Biomolecular Screening  2015;20(2):190-201.
EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. We describe a reliable approach that quantifies changes in global levels of histone modification marks using high-content analysis (HCA). The approach was validated in different cell lines by using small interfering RNA and SMOL inhibitors. By automation and miniaturization from a 384-well to 1536-well plate, we demonstrated its utility in conducting phenotypic HTS campaigns and assessing structure-activity relationships (SAR). This assay enables screening of SMOL EZH2 inhibitors and can advance the mechanistic understanding of H3K27me3 suppression, which is crucial with regard to epigenetic therapy. We observed that a decrease in global H3K27me3, induced by EZH2 inhibition, comprises two distinct mechanisms: (1) inhibition of de novo DNA methylation and (II) inhibition of dynamic, replication-independent H3K27me3 turnover. This report describes an HCA assay for primary HTS to identify, profile, and optimize cellular active SMOL inhibitors targeting histone methyltransferases, which could benefit epigenetic drug discovery.
doi:10.1177/1087057114559668
PMCID: PMC4361481  PMID: 25409661
high-content analysis; EZH2; KMT6; histone methyltransferase; chromatin modulators
20.  Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens 
Journal of Biomolecular Screening  2014;19(5):715-726.
Although small-molecule drug discovery efforts have focused largely on enzyme, receptor, and ion-channel targets, there has been an increase in such activities to search for protein-protein interaction (PPI) disruptors by applying high-throughout screening (HTS)–compatible protein-binding assays. However, a disadvantage of these assays is that many primary hits are frequent hitters regardless of the PPI being investigated. We have used the AlphaScreen technology to screen four different robust PPI assays each against 25,000 compounds. These activities led to the identification of 137 compounds that demonstrated repeated activity in all PPI assays. These compounds were subsequently evaluated in two AlphaScreen counter assays, leading to classification of compounds that either interfered with the AlphaScreen chemistry (60 compounds) or prevented the binding of the protein His-tag moiety to nickel chelate (Ni2+-NTA) beads of the AlphaScreen detection system (77 compounds). To further triage the 137 frequent hitters, we subsequently confirmed by a time-resolved fluorescence resonance energy transfer assay that most of these compounds were only frequent hitters in AlphaScreen assays. A chemoinformatics analysis of the apparent hits provided details of the compounds that can be flagged as frequent hitters of the AlphaScreen technology, and these data have broad applicability for users of these detection technologies.
doi:10.1177/1087057113516861
PMCID: PMC4153540  PMID: 24371213
AlphaScreen; protein-protein interaction; assay development; frequent hitter; drug discovery; high-throughput screening
21.  Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction 
Journal of Biomolecular Screening  2011;17(4):435-447.
Activation of the antioxidant response element (ARE) up-regulates enzymes involved in detoxification of electrophiles and reactive oxygen species. The induction of ARE genes is regulated by the interaction between redox sensor protein, Keap1, and the transcription factor, Nrf2. Fluorescently labeled Nrf2 peptides containing the ETGE motif were synthesized and optimized as tracers in the development of a fluorescence polarization (FP) assay to identify small molecule inhibitors of Keap1-Nrf2 interaction. The tracers were optimized to increase the dynamic range of the assay and their binding affinities to the Keap1 Kelch domain. The binding affinities of Nrf2 peptide inhibitors obtained in our FP assay using FITC-9mer Nrf2 peptide amide as the probe were in good agreement with those obtained previously by a surface plasmon resonance (SPR) assay. The FP assay exhibits considerable tolerance towards DMSO and produced a Z'-factor greater than 0.6 in a 384-well format. Further optimization of the probe led to cyanine-labeled 9mer Nrf2 peptide amide, which can be used along with the FITC-9mer Nrf2 peptide amide in a high throughput screening (HTS) assay to discover small molecule inhibitors of Keap1-Nrf2 interaction.
doi:10.1177/1087057111430124
PMCID: PMC3309107  PMID: 22156223
Nrf2; Keap1; ARE; fluorescence polarization; high throughput screening; oxidative response
22.  Identification and Characterization of Novel Tissue-Nonspecific Alkaline Phosphatase Inhibitors with Diverse Modes of Action 
Journal of Biomolecular Screening  2009;14(7):824-837.
Tissue-nonspecific alkaline phosphatase (TNAP) plays a major role in maintaining a ratio of phosphate to inorganic pyrophosphate (Pi/PPi) in biological fluids that is conducive to controlled skeletal mineralization while preventing inappropriate ectopic calcification. Medial calcification associated with Enpp1 or Ank deficiency or with end–stage renal disease is associated with an increase in TNAP activity in arteries that leads to reduced levels of PPi and increased vascular calcification. Here, we describe in detail a high-throughput screening (HTS) campaign to identify inhibitors of TNAP, performed within the Molecular Library Screening Center Network (MLSCN). A homogeneous luminescent TNAP assay was developed and optimized for identification of compounds with diverse mechanism of action (MOA). The MLSCN compound collection, containing 64,394 molecules at the time of screening, was tested in the assay. Several novel inhibitory scaffold classes were identified and demonstrated to have diverse selectivity and mode of inhibition (MOI) profiles. Representatives of the novel scaffolds exhibited nanomolar potency surpassing the inhibitors known to date.
This paper sets a successful example in which pharmacologically active compounds, with outstanding selectivity in a panel of more than 200 assays, are identified from high throughput screening. Integral to the success of the project were a well-designed compound collection, an industrial-level screening facility and a deep knowledge of target biology that were brought together through the NIH-sponsored Roadmap Initiative.
doi:10.1177/1087057109338517
PMCID: PMC3403534  PMID: 19556612
NIH Roadmap Initiatives; MLSCN; TNAP inhibitors; diverse MOA; compound selectivity
23.  Phenothiazine Neuroleptics Signal to the Human Insulin Promoter as Revealed by a Novel High-Throughput Screen 
Journal of Biomolecular Screening  2010;15(6):663-670.
A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic β-cell. A cell line from human islets in which the expression of insulin and other β-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of β-cell differentiated function.
doi:10.1177/1087057110372257
PMCID: PMC3374493  PMID: 20547533
diabetes; chlorpromazine; ethopropazine
24.  Complementary Cell-Based High Throughput Screens Identify Novel Modulators of the Unfolded Protein Response 
Journal of Biomolecular Screening  2011;16(8):825-835.
Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than two decades indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, we hypothesized that high throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small molecule activators of the apoptotic arm of the UPR to control or kill OSCC. We have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR sub-pathways. A ~66K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of pre-fractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80μM. A series of citrinin derivatives were isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds we examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, we found that patulin at 2.5 – 10μM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34 and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.
doi:10.1177/1087057111414893
PMCID: PMC3374590  PMID: 21844328
unfolded protein response; endoplasmic reticulum stress; cell-based assay; luciferase reporter; natural products
25.  Identification and Mechanistic Studies of a Novel Ubiquitin E1 Inhibitor 
Journal of Biomolecular Screening  2012;17(4):421-434.
Protein degradation via the ubiquitin-proteasome pathway is important for a diverse number of cellular processes ranging from cell signaling to development. Disruption of the ubiquitin pathway occurs in a variety of human diseases, including several cancers and neurological disorders. Excessive proteolysis of tumor suppressor proteins, such as p27, occurs in numerous aggressive human tumors. To discover small-molecule inhibitors that potentially prevent p27 degradation, we developed a series of screening assays, including a cell-based screen of a small-molecule compound library and two novel nucleotide exchange assays. Several small-molecule inhibitors, including NSC624206, were identified and subsequently verified to prevent p27 ubiquitination in vitro. The mechanism of NSC624206 inhibition of p27 ubiquitination was further unraveled using the nucleotide exchange assays and shown to be due to antagonizing ubiquitin activating enzyme (E1). We determined that NSC624206 and PYR-41, a recently reported inhibitor of ubiquitin E1, specifically block ubiquitin-thioester formation but have no effect on ubiquitin adenylation. These studies reveal a novel E1 inhibitor that targets a specific step of the E1 activation reaction. NSC624206 could, therefore, be potentially useful for the control of excessive ubiquitin-mediated proteolysis in vivo.
doi:10.1177/1087057111433843
PMCID: PMC3339042  PMID: 22274912
ubiquitin E1; inhibitor; p27kip1; ubiquitin; proteolysis

Results 1-25 (31)