PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Monitoring compound integrity with cytochrome P450 assays and qHTS 
Journal of biomolecular screening  2009;14(5):538-546.
We describe how room temperature storage of a 1,120 member compound library prepared in either DMSO or in a hydrated DMSO/water (67/33) mixture affects the reproducibility of potency values as monitored using cytochrome P450 1A2 and 2D6 isozyme assays. The bioluminescent assays showed Z′-factors of 0.71 and 0.62, with 18% and 32% of the library found as active against the CYP 1A2 and 2D6 isozymes respectively. We tested the library using quantitative high-throughput screening to generate potency values for every library member which was measured at seven time intervals spanning 37 weeks. We calculated the minimum significant ratio (MSR) from these potency values at each time interval and we found that for the library stored in DMSO, the CYP 1A2 and 2D6 assay MSRs progressed from approximately 2.0 to 5.0. The hydrated conditions showed similar performance in both MSR progression and analytical QC results. Based on this study we recommend that DMSO samples be stored in 1,536-well plates for < 4 months at room temperature. Further, the study shows the magnitude of potency changes that can occur in a robust bioassay due to compound sample storage.
doi:10.1177/1087057109336954
PMCID: PMC3430136  PMID: 19483146
HTS; compound storage; DMSO; quantitative HTS
2.  A Quantitative High Throughput Screen Identifies Novel Inhibitors of the Interaction of Thyroid Receptor β with a Peptide of Steroid Receptor Coactivator 2 
Journal of biomolecular screening  2011;16(6):618-627.
The thyroid hormone receptors (TR) are members of the nuclear hormone receptor (NHR) superfamily that regulate development, growth, and metabolism. Upon ligand binding, TR releases bound corepressors and recruits coactivators to modulate target gene expression. Steroid Receptor Coactivator 2 (SRC2) is an important coregulator that interacts with TRβ to activate gene transcription. To identify novel inhibitors of the TRβ and SRC2 interaction, we performed a quantitative high throughput screen (qHTS) of a TRβ-SRC2 fluorescence polarization assay against more than 290,000 small molecules. The qHTS assayed compounds at six concentrations up to 92 uM to generate titration-response curves and determine the potency and efficacy of all compounds. The qHTS dataset enabled the characterization of actives for structure-activity relationships as well as for potential artifacts such as fluorescence interference. Selected qHTS actives were tested in the screening assay using fluoroprobes labeled with Texas Red or fluorescein. The retest identified 19 series and 4 singletons as active in both assays with 40% or greater efficacy, free of compound interference and not toxic to mammalian cells. Selected compounds were tested as independent samples and a methylsulfonylnitrobenzoate series inhibited the TRβ-SRC2 interaction with 5 uM IC50. This series represents a new class of thyroid hormone receptor-coactivator modulators.
doi:10.1177/1087057111402199
PMCID: PMC3162318  PMID: 21482722
thyroid receptor; small molecule; HTS; coactivator; protein-protein interaction
3.  An AlphaScreen™ Based High-throughput Screen to Identify Inhibitors of Hsp90 and Cochaperone Interaction 
Journal of biomolecular screening  2009;14(3):273-281.
Hsp90 has emerged as an important anti-cancer drug target because of its essential role in promoting the folding and maturation of many oncogenic proteins. Here we describe the development of the first high throughput screen, based on AlphaScreen™ technology, to identify a novel type of Hsp90 inhibitors that interrupt its interaction with the cochaperone HOP. The assay uses the 20-mer C-terminal peptide of Hsp90 and the TPR2A domain of HOP. Assay specificity was demonstrated by measuring different interactions using synthetic peptides, with measured IC50s in good agreement with reported values. The assay is stable over 12 hours and tolerates DMSO up to 5%. We first validated the assay by screening against 20,000 compounds in 384-well format. After further optimization into a 1536-well format, it was screened against a NCGC library of 76,134 compounds, with a signal-to-background (S/B) ratio of 78 and Z’ factor of 0.77. The present assay can be used for discovery of novel small molecule Hsp90 inhibitors that can be used as chemical probes to investigate the role of cochaperones in Hsp90 function. Such molecules have the potential to be developed into novel anti-cancer drugs, for use alone or in combination with other Hsp90 inhibitors.
doi:10.1177/1087057108330114
PMCID: PMC3066041  PMID: 19211782
heat shock protein 90 (Hsp90); Hsp organizing protein (HOP); tetratricopeptide repeat (TPR); AlphaScreen™; high-throughput screening (HTS)
4.  A Cell-based PDE4 Assay in 1536-well Plate format for High Throughput Screening 
Journal of biomolecular screening  2008;13(7):609-618.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3', 5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'-nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases including asthma, cardiovascular disease, ADHD, Parkinson’s disease, and Alzheimer’s disease. Though biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. Here we report the development and validation of a new cell-based PDE4 assay using a constitutively active GPCR as a driving force for cAMP production and a cyclic nucleotide gated (CNG) cation channel as a biosensor in 1536-well plates.
doi:10.1177/1087057108319977
PMCID: PMC2661206  PMID: 18591513
phosphodiesterase; PDE IV; cyclic nucleotide gated ion channels; cell-based assay; high throughput screening

Results 1-4 (4)