Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
Year of Publication
Document Types
1.  Evaluation of Cholesterol Reduction Activity of Methyl-β-cyclodextrin Using Differentiated Human Neurons and Astrocytes 
Journal of biomolecular screening  2012;17(9):1243-1251.
Recent advances in stem cell technology have enabled large scale production of human cells such as cardiomyocytes, hepatocytes and neurons for evaluation of pharmacological effect and toxicity of drug candidates. The assessment of compound efficacy and toxicity using human cells should lower the high clinical attrition rates of drug candidates by reducing the impact of species differences on drug efficacy and toxicity from animal studies. Methyl-β-cyclodextrin (MBCD) has shown to reduce lysosomal cholesterol accumulation in skin fibroblasts derived from patients with Niemann Pick type C disease and in the NPC1−/− mouse model. However, the compound has never been tested in human differentiated neurons. We have determined the cholesterol reduction effect of MBCD in neurons differentiated from human neural stem cells and commercially available astrocytes. The use of NSCs for producing differentiated neurons in large quantities can significantly reduce the production time and enhance the reproducibility of screening results. The EC50 values of MBCD on cholesterol reduction in human neurons and astrocytes were 66.9 and 110.7 µM, respectively. The results indicate that human neurons differentiated from the NSCs and human astrocytes are useful tools for evaluating pharmacological activity and toxicity of drug candidates to predict their clinical efficacy.
PMCID: PMC3530257  PMID: 22923786
induced pluripotent stem cells; neural stem cells; human neurons; astrocytes; skin fibroblasts; methyl-β-cyclodextrin
2.  Monitoring compound integrity with cytochrome P450 assays and qHTS 
Journal of biomolecular screening  2009;14(5):538-546.
We describe how room temperature storage of a 1,120 member compound library prepared in either DMSO or in a hydrated DMSO/water (67/33) mixture affects the reproducibility of potency values as monitored using cytochrome P450 1A2 and 2D6 isozyme assays. The bioluminescent assays showed Z′-factors of 0.71 and 0.62, with 18% and 32% of the library found as active against the CYP 1A2 and 2D6 isozymes respectively. We tested the library using quantitative high-throughput screening to generate potency values for every library member which was measured at seven time intervals spanning 37 weeks. We calculated the minimum significant ratio (MSR) from these potency values at each time interval and we found that for the library stored in DMSO, the CYP 1A2 and 2D6 assay MSRs progressed from approximately 2.0 to 5.0. The hydrated conditions showed similar performance in both MSR progression and analytical QC results. Based on this study we recommend that DMSO samples be stored in 1,536-well plates for < 4 months at room temperature. Further, the study shows the magnitude of potency changes that can occur in a robust bioassay due to compound sample storage.
PMCID: PMC3430136  PMID: 19483146
HTS; compound storage; DMSO; quantitative HTS
3.  A Quantitative High Throughput Screen Identifies Novel Inhibitors of the Interaction of Thyroid Receptor β with a Peptide of Steroid Receptor Coactivator 2 
Journal of biomolecular screening  2011;16(6):618-627.
The thyroid hormone receptors (TR) are members of the nuclear hormone receptor (NHR) superfamily that regulate development, growth, and metabolism. Upon ligand binding, TR releases bound corepressors and recruits coactivators to modulate target gene expression. Steroid Receptor Coactivator 2 (SRC2) is an important coregulator that interacts with TRβ to activate gene transcription. To identify novel inhibitors of the TRβ and SRC2 interaction, we performed a quantitative high throughput screen (qHTS) of a TRβ-SRC2 fluorescence polarization assay against more than 290,000 small molecules. The qHTS assayed compounds at six concentrations up to 92 uM to generate titration-response curves and determine the potency and efficacy of all compounds. The qHTS dataset enabled the characterization of actives for structure-activity relationships as well as for potential artifacts such as fluorescence interference. Selected qHTS actives were tested in the screening assay using fluoroprobes labeled with Texas Red or fluorescein. The retest identified 19 series and 4 singletons as active in both assays with 40% or greater efficacy, free of compound interference and not toxic to mammalian cells. Selected compounds were tested as independent samples and a methylsulfonylnitrobenzoate series inhibited the TRβ-SRC2 interaction with 5 uM IC50. This series represents a new class of thyroid hormone receptor-coactivator modulators.
PMCID: PMC3162318  PMID: 21482722
thyroid receptor; small molecule; HTS; coactivator; protein-protein interaction
4.  Automated High-Content Screening for Compounds That Disassemble the Perinucleolar Compartment 
Journal of biomolecular screening  2009;14(9):1045-1053.
All solid malignancies share characteristic traits, including unlimited cellular proliferation, evasion of immune regulation, and the propensity to metastasize. The authors have previously described that a subnuclear structure, the perinucleolar compartment (PNC), is associated with the metastatic phenotype in solid tumor cancer cells. The percentage of cancer cells that contain PNCs (PNC prevalence) is indicative of the malignancy of a tumor both in vitro and in vivo, and thus PNC prevalence is a marker that reflects metastatic capability in a population of tumor cells. Although the function of the PNC remains to be determined, the PNC is highly enriched with small RNAs and RNA binding proteins. The initial chemical biology studies using a set of anticancer drugs that disassemble PNCs revealed a direct association of the structure with DNA. Therefore, PNC prevalence reduction as a phenotypic marker can be used to identify compounds that target cellular processes required for PNC maintenance and hence used to elucidate the nature of the PNC function. Here the authors report the development of an automated high-content screening assay that is capable of detecting PNC prevalence in prostate cancer cells (PC-3M) stably expressing a green fluorescent protein (GFP)–fusion protein that localizes to the PNC. The assay was optimized using known PNC-reducing drugs and non-PNC-reducing cytotoxic drugs. After optimization, the fidelity of the assay was probed with a collection of 8284 compounds and was shown to be robust and capable of detecting known and novel PNC-reducing compounds, making it the first reported high-content phenotypic screen for small changes in nuclear structure.
PMCID: PMC2857721  PMID: 19762548
high-content screening; nucleus; cancer; perinucleolar compartment; small molecules
5.  A Cell-based PDE4 Assay in 1536-well Plate format for High Throughput Screening 
Journal of biomolecular screening  2008;13(7):609-618.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3', 5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'-nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases including asthma, cardiovascular disease, ADHD, Parkinson’s disease, and Alzheimer’s disease. Though biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. Here we report the development and validation of a new cell-based PDE4 assay using a constitutively active GPCR as a driving force for cAMP production and a cyclic nucleotide gated (CNG) cation channel as a biosensor in 1536-well plates.
PMCID: PMC2661206  PMID: 18591513
phosphodiesterase; PDE IV; cyclic nucleotide gated ion channels; cell-based assay; high throughput screening
6.  Quantitative High Throughput Screening Using a Live Cell cAMP Assay Identifies Small Molecule Agonists of the TSH Receptor 
Journal of biomolecular screening  2008;13(2):120-127.
The thyroid stimulating hormone receptor (TSHR) belongs to the glycoprotein hormone receptor subfamily of seven-transmembrane spanning receptors. TSHR is expressed in thyroid follicular cells and is activated by TSH, which regulates growth and function of these cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small molecule agonist of the TSHR is available. To screen for novel TSHR agonists, we miniaturized a cell-based cAMP assay into 1536-well plate format. This assay uses a HEK293 cell line stably expressing the TSHR and a cyclic nucleotide gated ion channel (CNG), which functions as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal HTRF cAMP-based assay. 49 compounds in several structural classes have been confirmed as small molecule TSHR agonists that will serve as starting compounds for chemical optimization and studies of thyroid physiology in health and disease.
PMCID: PMC2653065  PMID: 18216391
Thyroid-stimulating hormone TSH; TSHR; TSHR agonist; quantitative high throughput screening; qHTS; HTS; probe identification; CNG; PubChem

Results 1-6 (6)