PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Ocular motor anatomy in a case of interrupted saccades 
Progress in brain research  2008;171:563-566.
Saccades normally place the eye on target with one smooth movement. In late-onset Tay—Sachs (LOTS), intrasaccadic transient decelerations occur that may result from (1) premature omnipause neuron (OPN) re-activation due to malfunction of the latch circuit that inhibits OPNs for the duration of the saccade or (2) premature inhibitory burst neuron (IBN) activation due to fastigial nucleus (FN) dysregulation by the dorsal cerebellar vermis. Neuroanatomic analysis of a LOTS brain was performed. Purkinje cells were absent and gliosis of the granular cell layer was present in the dorsal cerebellar vermis. Deep cerebellar nuclei contained large inclusions. IBNs were present with small inclusions. The sample did not contain the complete OPN region; however, neurons in the OPN region contained massive inclusions. Pathologic findings suggest that premature OPN re-activation and/or inappropriate firing of IBNs may be responsible for interrupted saccades in LOTS. Cerebellar clinical dysfunction, lack of saccadic slowing, and significant loss of cerebellar cells suggest that the second cause is more likely.
doi:10.1016/S0079-6123(08)00680-8
PMCID: PMC2752380  PMID: 18718354
fastigial nucleus; omnipause neurons; burst neurons; latch circuit; brainstem
2.  Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease 
Progress in brain research  2008;171:567-570.
In late-onset Tay-Sachs disease (LOTS), saccades are interrupted by one or more transient decelerations. Some saccades reaccelerate and continue on before eye velocity reaches zero, even in darkness. Intervals between successive decelerations are not regularly spaced. Peak decelerations of horizontal and vertical components of oblique saccades in LOTS is more synchronous than those in control subjects. We hypothesize that these decelerations are caused by dysregulation of the fastigial nuclei (FN) of the cerebellum, which fire brain stem inhibitory burst neurons (IBNs).
doi:10.1016/S0079-6123(08)00681-X
PMCID: PMC2750844  PMID: 18718355
fastigial nucleus; omnipause neurons; burst neurons; latch circuit
3.  The role of omnipause neurons 
Progress in brain research  2008;171:115-121.
The anatomy and neurophysiology of the saccadic eye movement system have been well studied, but the roles of certain key neurons in this system are not fully appreciated. Important clues about the functional interactions in the saccadic system can be gleaned from the histochemistry of different saccadic neurons. The most prominent inhibitory neurons in the circuit are the omnidirectional pause neurons (OPN), which inhibit the premotor burst neurons that drive the eye. Most inhibitory neurons in the brain transmit γ-aminobutyric acid (GABA), but OPN transmit glycine (Gly). It is interesting to ask whether the saccadic system would work any differently if OPN were GABA-ergic. Gly and GABA receptors both provide a channel for a hyperpolarizing Cl- current that inhibits its target neuron. Depolarizing currents that excite the neurons come through several channels, including the NMDA receptor (NMDAR). The NMDAR is unique among receptors in that it has active sites for two different neurotransmitters, glutamate (Glu) and Gly. Gly is a co-agonist that acts to amplify the current produced by Glu. We have proposed a model of the saccadic brain stem circuitry that exploits this dual role of Gly to produce both inhibition of the saccadic circuit during fixation, and to increase its responsiveness, or gain, during movements. This suggests that OPNs act more as a regulator of the saccadic circuit’s gain, rather than as a gate for allowing saccades. We propose a new hypothesis: the OPNs play a general role as a modulator of arousal in orienting subsystems, such as saccades, pursuit, head movements, etc.
doi:10.1016/S0079-6123(08)00615-8
PMCID: PMC2750832  PMID: 18718289
glycine; burst neurons; brainstem; saccades

Results 1-3 (3)