PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Synaptically Activated Burst-Generating Conductances Underlie a Group-Pacemaker Mechanism for Respiratory Rhythm Generation in Mammals 
Progress in Brain Research  2010;187:111-136.
Breathing, chewing and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models has ruled out canonical mechanisms for respiratory rhythm that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play the key rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances – which are only available in the context of network activity – engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker.
doi:10.1016/B978-0-444-53613-6.00008-3
PMCID: PMC3370336  PMID: 21111204
preBötzinger Complex; pre-Bötzinger Complex; central pattern generator (CPG); metabotropic glutamate receptors; calcium-activated nonspecific cation current; mathematical models; emergent network properties; breathing

Results 1-1 (1)