PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Neuromuscular transmission failure in myasthenia gravis: decrement of safety factor and susceptibility of extraocular muscles 
An appropriate density of acetylcholine receptors (AChRs) and Na+ channels (NaChs) in the normal neuromuscular junction (NMJ) determines the magnitude of safety factor (SF) that guarantees fidelity of neuromuscular transmission. In myasthenia gravis (MG), an overall simplification of the postsynaptic folding secondary to NMJ destruction results in AChRs and NaChs depletion. Loss of AChRs and NaChs accounts respectively for 59% and 40% reduction of the SF at the endplate, which manifests as neuromuscular transmission failure. The extraocular muscles (EOM) have physiologically less developed postsynaptic folding, hence a lower baseline SF, which predisposes them to dysfunction in MG and development of fatigue during “high performance” eye movements, such as saccades. However, saccades in MG show stereotyped, conjugate initial components, similar to normal, which might reflect preserved neuromuscular transmission fidelity at the NMJ of the fast, pale global fibers, which have better developed postsynaptic folding than other extraocular fibers.
doi:10.1111/j.1749-6632.2012.06841.x
PMCID: PMC3539765  PMID: 23278588
safety factor; extraocular muscles; saccades; neuromuscular junction
2.  Do brainstem omnipause neurons terminate saccades? 
Saccade-generating burst neurons (BN) are inhibited by omnipause neurons (OPN), except during saccades. OPN activity pauses before saccade onset and resumes at the saccade end. Microstimulation of OPN stops saccades in mid-flight, which shows that OPN can end saccades. However, OPN pause duration does not correlate well with saccade duration, and saccades are normometric after OPN lesions. We tested whether OPN were responsible for stopping saccades both in late-onset Tay–Sachs, which causes premature saccadic termination, and in individuals with cerebellar hypermetria. We studied gaze shifts between two targets at different distances aligned on one eye, which consist of a disjunctive saccade followed by vergence. High-frequency conjugate oscillations during the vergence movements that followed saccades were present in all subjects studied, indicating OPN silence. Thus, mechanisms other than OPN discharge (e.g., cerebellar caudal fastigial nucleus–promoting inhibitory BN discharge) must contribute to saccade termination.
doi:10.1111/j.1749-6632.2011.06170.x
PMCID: PMC3438674  PMID: 21950975
Tay–Sachs disease; saccades; omnipause neurons; fastigial nucleus; Müller paradigm
3.  Critical role of cerebellar fastigial nucleus in programming sequences of saccades 
The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades.
doi:10.1111/j.1749-6632.2011.06119.x
PMCID: PMC3187558  PMID: 21950988
fastigial nucleus; double-step; saccade; latency; spinocerebellar ataxia; hypermetria; parallel processing
4.  Influence of orbital eye position on vertical saccades in progressive supranuclear palsy 
Disturbance of vertical saccadesis a cardinal feature of progressive supranuclear palsy (PSP). We investigated whether the amplitude and peak velocity of saccades is affected by the orbital position fromwhich movements start in PSP patients and age-matched control subjects. Subjects made vertical saccades in response to ± 5 degree vertical target jumps with their heads in one of three positions: head “center,” head pitched forward ~15 degrees, and head pitched back ~ 15 degrees.All patients showed some effect of starting eye position, whether beginning in the upward or downward field of gaze, on saccade amplitude, peak velocity (PV), and net range of movement. Generally, reduction of amplitude and PV were commensurate and bidirectional in the affected hemifield of gaze. Such findings are unlikelyto be due to orbital factors and could be explained by varying degrees of involvement of rostral midbrain nucleiin the pathological process.
doi:10.1111/j.1749-6632.2011.06120.x
PMCID: PMC3187876  PMID: 21950977
saccades; midbrain; neural integrator; eyeball; parkinsonian disorders
5.  Paraneoplastic disorders of eye movements 
Paraneoplastic syndromes affecting the brainstem and cerebellum are reported to cause a variety of abnormalities of eye movements. Recent studies have begun to account for the mechanisms underlying several syndromes, characterized by opsoclonus, slow, or dysmetric saccades, as well as downbeat nystagmus. We provide evidence that upbeat nystagmus in a patient with pancreatic cancer reflected a cerebellar-induced imbalance of otolithic pathways: she showed marked retropulsion, and her nystagmus was dependent on head position, being absent when supine, and suppressed with convergence. In addition to anti-Hu antibodies, we demonstrated antibodies to a novel neuronal cell surface antigen. Taken with other recent studies, our findings suggest that paraneoplastic syndromes arise due to antibodies against surface neuronal antigens, including receptors and channels. Abnormal eye movements in paraneoplastic syndromes offer insights into the pathogenesis of these disorders and the opportunity to test potential therapies, such as new drugs with effects on neuronal channels.
doi:10.1111/j.1749-6632.2011.06113.x
PMCID: PMC3187877  PMID: 21951005
upbeat nystagmus; oscillopsia; pancreatic endocrine; neoplasm
6.  Pharmacological tests of hypotheses for acquired pendular nystagmus 
Acquired pendular nystagmus (APN) occurs with multiple sclerosis (MS) and oculopalatal tremor (OPT); distinct features of the nystagmus have led to the development of separate models for the pathogenesis. APN in MS has been attributed to instability in the neural integrator, which normally ensures steady gaze. APN in OPT may result from electrotonic coupling between neurons in the hypertrophied inferior olivary nucleus, which induces maladaptive learning in cerebellar cortex. We tested these two hypotheses by analyzing the effects of gabapentin, memantine, and baclofen on both forms of nystagmus. No drug changed the dominant frequency of either form of APN, but the variability of frequency was affected with gabapentin and memantine in patients with OPT. The amplitude of APN in both MS and OPT was reduced with gabapentin and memantine, but not baclofen. Analyzing the effects of drug therapies on ocular oscillations provides a novel approach to test models of nystagmus.
doi:10.1111/j.1749-6632.2011.06118.x
PMCID: PMC3187918  PMID: 21951011
cerebellum; inferior olive; plasticity; learning; Guillain–Mollaret triangle; multiple sclerosis
7.  The effects of ion channel blockers validate the conductance-based model of saccadic oscillations 
Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (IT) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (Ih) and IT in the model abolished the simulated oscillations. We measured the effects of a selective blocker of IT (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of Ih and IT (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, Ih, and IT, in generation of saccadic oscillations and determining their kinematic properties.
doi:10.1111/j.1749-6632.2011.06130.x
PMCID: PMC3431800  PMID: 21950976
burst neurons; hyperpolarization-activated cation current; low-threshold calcium current; reciprocal innervations
8.  Changes in Dynamic and Kinematic Properties of Saccades in Ocular Myasthenia following Intravenous Immunoglobulin Treatment 
We studied the dynamics and kinematics of saccades in a patient with severe ocular myasthenia before and after treatment with intravenous immunoglobulin (IVIG). Before therapy, horizontal saccades were hypometric, but faster than similar-sized saccades made by normal subjects. During a 5-minute test period, saccades decreased in size (fatigue effect), but remained faster than those of controls. Listing’s plane of the eye with greater ophthalmoplegia was increased in thickness. After IVIG treatment, the range of eye movements improved, but saccades remained faster than those of controls. Also, no fatigue was observed and the thickness of Listing’s plane was reduced towards the normal range. Increased peak velocity, despite progressive hypometria due to fatigue, supports the hypothesis that the pale global extraocular muscle fibers are relatively spared in myasthenia. Involvement of other extraocular muscle fiber types leads to limited range of eye movements and an increase in the thickness of Listing’s plane.
doi:10.1111/j.1749-6632.2008.03712.x
PMCID: PMC3166887  PMID: 19645950
saccades; fatigue; pale extraocular muscle fibers; Listing’s plane
9.  Upbeat-torsional nystagmus and contralateral fourth nerve palsy due to unilateral dorsal ponto-mesencephalic lesion 
The central projections of the anterior semicircular canals are thought to be conveyed from the vestibular nuclei to the ocular motor nuclei in the midbrain by three distinct brainstem pathways: the medial longitudinal fasciculus, crossing ventral tegmental tract, and brachium conjunctivum. There is controversy as to whether upbeat nystagmus could result from lesions involving each of these pathways. We report a 52-year-old man who presented with a contralesional fourth nerve palsy and primary position upbeat-torsional nystagmus due to a small unilateral dorsal ponto-mesencephalic lymphomatous deposit. We postulate that the upbeat-torsional nystagmus was caused by involvement of the brachium conjunctivum, which lies adjacent to the fourth nerve fascicles at the dorsal ponto-mesencephalic junction, but we cannot exclude involvement of the crossing ventral tegmental tract. Our observations suggest that, in humans, excitatory upward-torsional eye movement signals from the anterior semicircular canals could be partly conveyed to the midbrain by the brachium conjunctivum.
doi:10.1111/j.1749-6632.2008.03713.x
PMCID: PMC2866066  PMID: 19645952
Upbeat Nystagmus; Torsional Nystagmus; Fourth Nerve Palsy; Pons; Mesencephalon; Brachium Conjunctivum
10.  The Human Vertical Translation Vestibulo-ocular Reflex (tVOR): Normal and Abnormal Responses 
Geometric considerations indicate that the human translational vestibulo-ocular reflex (tVOR) should have substantially different properties than the angular vestibulo-ocular reflex (aVOR). Specifically, tVOR cannot simultaneously stabilize images of distant and near objects on the retina. Most studies make the tacit assumption that tVOR acts to stabilize foveal images even though, in humans, tVOR is reported to compensate for less than 60% of foveal image motion. We have determined that the compensation gain (eye rotational velocity / required eye rotational velocity to maintain foveal target fixation) of tVOR is held steady at ~ 0.6 during viewing of either near or distant targets during vertical (bob) translations in ambient illumination. We postulate that tVOR evolved not to stabilize the image of the target on the fovea, but rather to minimize retinal image motion between objects lying in different depth planes, in order to optimize motion parallax information. Such behavior is optimized when binocular visual cues of both far and distant targets are available in ambient light. Patients with progressive supranuclear palsy or cerebellar ataxia show impaired ability to increase tVOR responses appropriately when they view near targets. In cerebellar patients, impaired ability to adjust tVOR responses to viewing conditions occurs despite intact ability to converge at near. Loss of the ability to adjust tVOR according to viewing conditions appears to represent a distinct disorder of vestibular function.
doi:10.1111/j.1749-6632.2008.03711.x
PMCID: PMC2858323  PMID: 19645882
Locomotion; moving platform; motional parallax; PSP; cerebellar ataxia

Results 1-10 (10)