Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia 
The New England Journal of Medicine  2012;366(15):1371-1381.
Failure of remission-induction therapy is a rare but highly adverse event in children and adolescents with acute lymphoblastic leukemia (ALL).
We identified induction failure, defined by the persistence of leukemic blasts in blood, bone marrow, or any extramedullary site after 4 to 6 weeks of remission-induction therapy, in 1041 of 44,017 patients (2.4%) 0 to 18 years of age with newly diagnosed ALL who were treated by a total of 14 cooperative study groups between 1985 and 2000. We analyzed the relationships among disease characteristics, treatments administered, and outcomes in these patients.
Patients with induction failure frequently presented with high-risk features, including older age, high leukocyte count, leukemia with a T-cell phenotype, the Philadelphia chromosome, and 11q23 rearrangement. With a median follow-up period of 8.3 years (range, 1.5 to 22.1), the 10-year survival rate (±SE) was estimated at only 32±1%. An age of 10 years or older, T-cell leukemia, the presence of an 11q23 rearrangement, and 25% or more blasts in the bone marrow at the end of induction therapy were associated with a particularly poor outcome. High hyperdiploidy (a modal chromosome number >50) and an age of 1 to 5 years were associated with a favorable outcome in patients with precursor B-cell leukemia. Allogeneic stem-cell transplantation from matched, related donors was associated with improved outcomes in T-cell leukemia. Children younger than 6 years of age with precursor B-cell leukemia and no adverse genetic features had a 10-year survival rate of 72±5% when treated with chemotherapy only.
Pediatric ALL with induction failure is highly heterogeneous. Patients who have T-cell leukemia appear to have a better outcome with allogeneic stem-cell transplantation than with chemotherapy, whereas patients who have precursor B-cell leukemia without other adverse features appear to have a better outcome with chemotherapy. (Funded by Deutsche Krebshilfe and others.)
PMCID: PMC3374496  PMID: 22494120
2.  The Tumor Lysis Syndrome 
The New England journal of medicine  2011;364(19):1844-1854.
PMCID: PMC3437249  PMID: 21561350
3.  Treatment of Childhood Acute Lymphoblastic Leukemia Without Prophylactic Cranial Irradiation 
The New England journal of medicine  2009;360(26):2730-2741.
We conducted a clinical trial to test whether prophylactic cranial irradiation could be omitted in all children with newly diagnosed acute lymphoblastic leukemia.
A total of 498 evaluable patients were enrolled. Treatment intensity was based on presenting features and the level of minimal residual disease after remission induction treatment. Continuous complete remission was compared between the 71 patients who previously would have received prophylactic cranial irradiation and the 56 historical controls who received it.
The 5-year event-free and overall survival probabilities (95% confidence interval) for all 498 patients were 85.6% (79.9% to 91.3%) and 93.5% (89.8% to 97.2%), respectively. The 5-year cumulative risk of isolated central-nervous-system (CNS) relapse was 2.7% (1.1% to 4.2%), and that of any CNS relapse (isolated plus combined) was 3.9% (1.9% to 5.9%). The 71 patients had significantly better continuous complete remission than the 56 historical controls (P=0.04). All 11 patients with isolated CNS relapse remain in second remission for 0.4 to 5.5 years. CNS leukemia (CNS-3 status) or a traumatic lumbar puncture with blasts at diagnosis and a high level of minimal residual disease (≥ 1%) after 6 weeks of remission induction were significantly associated with poorer event-free survival. Risk factors for CNS relapse included the presence of the t(1;19)[TCF3-PBX1], any CNS involvement at diagnosis, and T-cell immunophenotype. Common adverse effects included allergic reactions to L-asparaginase, osteonecrosis, thrombosis, and disseminated fungal infection.
With effective risk-adjusted chemotherapy, prophylactic cranial irradiation can be safely omitted in the treatment of childhood acute lymphoblastic leukemia.
PMCID: PMC2754320  PMID: 19553647
4.  Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia 
The New England journal of medicine  2009;360(5):470-480.
Despite best current therapy, up to 20% of pediatric patients with acute lymphoblastic leukemia (ALL) have a relapse. Recent genomewide analyses have identified a high frequency of DNA copy-number abnormalities in ALL, but the prognostic implications of these abnormalities have not been defined.
We studied a cohort of 221 children with high-risk B-cell–progenitor ALL with the use of single-nucleotide–polymorphism microarrays, transcriptional profiling, and resequencing of samples obtained at diagnosis. Children with known very-high-risk ALL subtypes (i.e., BCR-ABL1–positive ALL, hypodiploid ALL, and ALL in infants) were excluded from this cohort. A copy-number abnormality was identified as a predictor of poor outcome, and it was then tested in an independent validation cohort of 258 patients with B-cell–progenitor ALL.
More than 50 recurring copy-number abnormalities were identified, most commonly involving genes that encode regulators of B-cell development (in 66.8% of patients in the original cohort); PAX5 was involved in 31.7% and IKZF1 in 28.6% of patients. Using copy-number abnormalities, we identified a predictor of poor outcome that was validated in the independent validation cohort. This predictor was strongly associated with alteration of IKZF1, a gene that encodes the lymphoid transcription factor IKAROS. The gene-expression signature of the group of patients with a poor outcome revealed increased expression of hematopoietic stem-cell genes and reduced expression of B-cell–lineage genes, and it was similar to the signature of BCR-ABL1–positive ALL, another high-risk subtype of ALL with a high frequency of IKZF1 deletion.
Genetic alteration of IKZF1 is associated with a very poor outcome in B-cell–progenitor ALL.
PMCID: PMC2674612  PMID: 19129520

Results 1-4 (4)