PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None
Journals
Year of Publication
issn:0022-300
1.  Society of Nematologists 2011 Meeting 
Journal of Nematology  2011;43(3-4):223-297.
PMCID: PMC3547343  PMID: 23431222
2.  Field Responses of Bermudagrass and Seashore paspalum Cultivars to Sting and Spiral Nematodes 
Journal of Nematology  2011;43(3-4):201-208.
Belonolaimus longicaudatus and Helicotylenchus spp. are damaging nematode species on bermudagrass (Cynodon spp.) and seashore paspalum (Paspalum vaginatum) in sandy soils of the southeastern United States. Eight bermudagrass and three seashore paspalum cultivars were tested for responses to both nematode species in field plots for two years in Florida. Soil samples were taken every three months and nematode population densities in soil were quantified. Turfgrass aboveground health was evaluated throughout the growing season. Results showed that all bermudagrass cultivars, except TifSport, were good hosts for B. longicaudatus, and all seashore paspalum cultivars were good hosts for H. pseudorobustus. Overall, bermudagrass was a better host for B. longicaudatus while seashore paspalum was a better host for H. pseudorobustus. TifSport bermudagrass and SeaDwarf seashore paspalum cultivars supported the lowest population densities of B. longicaudatus. Seashore paspalum had a higher percent green cover than bermudagrass in the nematode-infested field. Nematode intolerant cultivars were identified.
PMCID: PMC3547344  PMID: 23430148
Belonolaimus longicaudatus; bermudagrass; Cynodon spp.; field; Helicotylenchus spp.; Paspalum vaginatum; resistance; seashore paspalum; spiral nematodes; sting nematodes
3.  Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes 
Journal of Nematology  2011;43(3-4):172-181.
Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.
PMCID: PMC3547345  PMID: 23430284
conservation tillage; Heterodera glycines; Glycine max; Lolium multiflorum, crop management; soil mite; spider; Plathypena scabra; nematode community
4.  Induction of Systemic Acquired Resistance by Rotylenchulus reniformis and Meloidogyne incognita in Cotton Following Separate and Concomitant Inoculations 
Journal of Nematology  2011;43(3-4):160-165.
Systemic acquired resistance (SAR) can be elicited by virulent and avirulent pathogenic strains and SAR against plant-parasitic nematodes has been documented. Our objective was to determine whether co-infection of cotton by Meloidogyne incognita and Rotylenchulus reniformis affects the population level of either nematode compared to infection by each species individually. Split-root trials were conducted in which plants were inoculated with i) R. reniformis only, ii) M. incognita only, iii) both R. reniformis and M. incognita, or iv) no nematodes. Half of the root system was inoculated with R. reniformis or M. incognita on day 0 and the other half with M. incognita or R. reniformis on day 0 or day 14 depending on the experiment. Experiments were conducted on cotton cultivar DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (germplasm line resistant to R. reniformis), and M-120 RNR (germplasm line resistant to M. incognita), and tests were terminated 8 wk after the last inoculation. Both soil (vermiform) and roots (egg) extracted from each half of the root system to determine the total nematode population levels, and root galling was rated on a 0 to 10 scale. Mixed models analysis and comparison of least squares means indicated no differences in root galling (except on LONREN-1) or population levels when the two nematode species were introduced on the same day. When M. incognita was introduced 14 d after R. reniformis, reduction in galling (36% on DP 0935 and 33% on LONREN-1) and M. incognita population levels (35% on DP 0935 and 45% on LONREN-1) were significant (P ≤ 0.05). When R. reniformis was inoculated 14 d after M. incognita, reduction in R. reniformis population levels (18% on DP 0935 and 26% on M-120) were significant. This study documents for the first time that infection of cotton by a nematode can elicit SAR to another nematode species.
PMCID: PMC3547346  PMID: 23430318
Cotton; induced resistance; Meloidogyne incognita, reniform nematode; root-knot nematode; Rotylenchulus reniformis; split-root system; systemic acquired resistance
5.  The effect of linalool on second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida 
Journal of Nematology  2011;43(3-4):149-151.
Linalool is either a toxic compound to a few species of plant parasitic nematodes or attractive to entomopathogenic nematodes. This compound is produced and emitted by several host plants of Globodera rostochiensis and G. pallida, the potato cyst nematodes (PCN). With the aim to reveal the effect of linalool on PCN, laboratory assays were carried out. Survival of PCN second-stage juveniles (J2s) in water + linalool control did not differ; thus, proving linalool to be nontoxic to PCN. Behavioral assays carried out in Petri dishes revealed attractiveness in the form of positive response of J2s of both PCN species towards linalool. Based on these behavioral assays, sensitivity to linalool of G. rostochiensis J2s was higher compared with that of G. pallida J2s. Linalool is the first compound of plant origin to elicit positive response in both PCN species.
PMCID: PMC3547347  PMID: 23430380
Chemoattraction; behavior; Globodera rostochiensis; Globodera pallida, linalool; potato cyst nematodes; second-stage juvenile; Solanaceae
6.  Vertical Distribution of Hop Cyst Nematode in Hop Gardens in Central Europe 
Journal of Nematology  2011;43(3-4):220-222.
PMCID: PMC3547348  PMID: 23430461
Heterodera humuli; hop cyst nematode; vertical distribution; the Czech Republic; the Slovak Republic
7.  The role of wood-inhabiting bacteria in pine wilt disease 
Journal of Nematology  2011;43(3-4):129-134.
The pathogenicity of the pine wood nematode (PWN), Bursaphelenchus xylophilus together with the bacteria isolated from black pine (Pinus thunbergii) bark inoculated to axenic black pine seedlings, significantly exceeded that of the axenic PWNs alone, demonstrating that the bacteria play an important role in pine wilt disease. Inoculation of seedlings with bacteria-free culture filtrates of the seven isolates from the dead seedlings from the above experiment showed that all isolate filtrates killed the seedlings within 8 days. Identification of the bacteria using 16S rDNA sequencing showed that the isolates belonged to strains By253Ydz-fq, S209, 210-50 and 210-50 in Bacillus and the DN1.1 strain of Stenotrophomonas maltophilia, respectively. Completing Koch’s postulates using the seven bacterial isolates to inoculate pine seedlings showed that all the seedlings that received aseptic PWNs mixed with the seven bacterial isolates died within 18 days post inoculation, while those inoculated with ‘wild’ PWNs died 16 days post inoculation. No disease symptoms developed on seedlings that received sterile water or aseptic PWNs. The horizontal transfer of the pathogenic bacteria may explain differences in bacterial species carried by PWN in different geographic areas.
PMCID: PMC3547349  PMID: 23430766
Bursaphelenchus xylophilus, ecology; forest bacteria; pine wilt disease; Pinus thunbergii
8.  Virulence of Entomopathogenic Nematodes to Plum Curculio, Conotrachelus nenuphar: Effects of Strain, Temperature, and Soil Type 
Journal of Nematology  2011;43(3-4):187-195.
The plum curculio, Conotrachelus nenuphar, is a major pest of stone and pome fruit (e.g., apples, pears, peaches, cherries, etc.). Entomopathogenic nematodes (Steinernema spp. and Heterorhabditis spp.) may be used to control the larval stage of C. nenuphar following fruit drop. Indeed, certain entomopathogenic nematodes species have previously been shown to be highly effective in killing C. nenuphar larvae in laboratory and field trials. In field trials conducted in the Southeastern, USA, Steinernema riobrave has thus far been shown to be the most effective species. However, due to lower soil temperatures, other entomopathogenic nematode strains or species may be more appropriate for use against C. nenuphar in the insect’s northern range. Thus, the objective of this study was to conduct a broad screening of entomopathogenic nematodes. Under laboratory conditions, we determined the virulence of 13 nematode strains (comprising nine species) in two different soils (a loam and clay-loam) and three different temperatures (12°C, 18°C, and 25°C). Superior virulence was observed in S. feltiae (SN strain), S. rarum (17 C&E strain), and S. riobrave (355 strain). Promising levels of virulence were also observed in others including H. indica (HOM1 strain), H. bacteriophora (Oswego strain), S. kraussei, and S. carpocapsae (Sal strain). All nematode treatments were affected by temperature with the highest virulence observed at the highest temperature (25°C). In future research, field tests will be used to further narrow down the most suitable nematode species for C. nenuphar control.
PMCID: PMC3547350  PMID: 23430967
biological control; Conotrachelus nenuphar; entomopathogenic nematode; Heterorhabditis; plum curculio; Steinernema
9.  Influence of Infection of Cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the Production of Enzymes Involved in Systemic Acquired Resistance 
Journal of Nematology  2011;43(3-4):152-159.
Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR in cotton, but biochemical evidence of SAR was lacking. Our objective was to determine whether infection of cotton by M. incognita and R. reniformis increases the levels of P-peroxidase, G-peroxidase, and catalase enzymes which are involved in induced resistance. A series of greenhouse trials was conducted; each trial included six replications of four treatments applied to one of three cotton genotypes in a randomized complete block design. The four treatments were cotton plants inoculated with i) R. reniformis, ii) M. incognita, iii) BTH (Actigard), and iv) a nontreated control. Experiments were conducted on cotton genotypes DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (resistant to R. reniformis), and M-120 RNR (resistant to M. incognita), and the level of P-peroxidase, G-peroxidase, and catalase activity was measured before and 2, 4, 6, 10, and 14 d after treatment application. In all cotton genotypes, activities of all three enzymes were higher (P ≤ 0.05) in leaves of plants infected with M. incognita and R. reniformis than in the leaves of control plants, except that M. incognita did not increase catalase activity on LONREN-1. Increased enzyme activity was usually apparent 6 d after treatment. This study documents that infection of cotton by M. incognita or R. reniformis increases the activity of the enzymes involved in systemic acquired resistance; thereby providing biochemical evidence to substantiate previous reports of nematode-induced SAR in cotton.
PMCID: PMC3547351  PMID: 23431029
BTH; catalase; Meloidogyne incognita, peroxidase; reniform nematode; root-knot nematode; Rotylenchulus reniformis; systemic acquired resistance
10.  Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes 
Journal of Nematology  2011;43(3-4):135-148.
Observations in three Australian sugarcane fields suggested that the soil just under the trash blanket (the covering of crop residue that remains on the soil surface after crops are harvested) was suppressive to plant-parasitic nematodes. Roots were concentrated in this upper layer of soil but plant-parasitic nematode populations were relatively low and roots showed few signs of nematode damage. Root biomass was much lower 15 cm further down the soil profile, where root health was poor and populations of plant-parasitic nematodes were 3-5 times higher than near the soil surface. A bioassay in which Radopholus similis (a nematode that does not occur in sugarcane soils) was inoculated into heat-sterilized and untreated soils, confirmed that biological factors were limiting nematode populations in some of the soils, with soil from 0-2 cm much more suppressive than soil from 15-17 cm. Surface soil from one site was highly suppressive, as only 16% of R. similis recoverable from heated soil were retrieved from this soil after 8 days. Numerous soil chemical, biochemical, and biological properties were measured, and non-linear regression analysis identified two major groups of factors that were significantly associated with suppressiveness. One group reflected the amount of organic matter in soil (total C, total N, and labile C) and the other was associated with the size of the free-living nematode community (total numbers of free-living nematodes, and numbers of plant associates, bacterial feeders, fungal feeders, and carnivores). These results suggested that suppressiveness was biologically mediated and was sustained by C inputs from crop residues and roots. Since nematode-trapping fungi in the test soils could not be quantified using traditional dilution plating methods, their possible role as suppressive agents was assessed by generating TRFLP profiles with Orbiliales-specific primers, and by sequencing cloned PCR products. Although the molecular data were obtained from a limited number of samples, the level of suppression was significantly correlated to the number of Orbiliales clone groups and was also related to the number of Orbiliales species and TRFs, suggesting that this group of fungi may have been one of the suppressive factors operating in the test soils.
PMCID: PMC3547352  PMID: 23431051
biological control; clone library; mulch; nematode community analysis; nematode-trapping fungi; Orbiliales; predatory nematodes; organic matter-mediated suppression; TRFLP; sugarcane; suppressive soil
11.  Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes 
Journal of Nematology  2011;43(3-4):196-200.
To build upon prior research demonstrating the potential of entomopathogenic nematode dissemination by infected adult Japanese beetle, Popillia japonica, we evaluated susceptibility of the adult beetles to 20 strains of Steinernema and Heterorhabditis under laboratory conditions. The nematodes were applied at a rate of 10,000 infective juveniles per 10 adult beetles in 148 mL plastic cups containing autoclaved sand and sassafras leaves as a source of food for the beetles. All strains infected the beetles and caused 55% to 95% mortality. The most virulent strains that caused 50% beetle mortality in less than 5 days included a strain of H. georgiana (D61), three strains of Steinernema sp. (R54, R45, and FC48), and two strains of S. carpocapsae (All and D60). The ability of two strains of Steinernema sp. (R45 and R54) and two strains of Heterorhabditis bacteriophora (D98 and GPS11) to infect and reproduce in the beetle was further examined to assess the potential of infected beetles to disseminate nematodes upon their death. All four strains infected and killed the beetles, but only Steinernema strains reproduced in the cadavers. We conclude that both Heterorhabditis and Steinernema strains are able to cause mortality to adult Japanese beetle, but Steinernema strains may be effectively disseminated due to their reproduction in the beetle.
PMCID: PMC3547353  PMID: 23431080
Heterorhabditis; Steinernema; biological control; Japanese beetle; Popillia japonica
12.  Microplot Evaluation of Rootstocks for Control of Meloidogyne incognita on Grafted Tomato, Muskmelon, and Watermelon 
Journal of Nematology  2011;43(3-4):166-171.
Microplot experiments were conducted over two years (four growing seasons) to evaluate Meloidogyne incognita resistance in rootstocks used for grafted tomato (Solanum lycopersicum), muskmelon (Cucumis melo), and watermelon (Citrullus lanatus). Three tomato rootstocks; ‘TX301’, ‘Multifort’, and ‘Aloha’, were tested in addition to the nongrafted scion, ‘Florida-47’. Two muskmelon rootstocks; Cucumis metuliferus and ‘Tetsukabuto’ (Cucurbita maxima × Cucurbita moschata) were evaluated with the nongrafted scion ‘Athena’. Two watermelon rootstocks included ‘Emphasis’, a lagenaria-type, and an interspecific squash hybrid ‘StrongTosa’, which were grafted to the scion ‘TriX Palomar’ and planted only in the second year. Microplots were infested with M. incognita eggs in September each year. Tomatoes were planted in September followed by melons in March. In both years of the study, M. incognita juveniles (J2) in soil were similar among all tomato rootstocks, but numbers in roots were higher in the nongrafted Florida 47 than in all grafted rootstocks. In muskmelon only C. metuliferus rootstock reduced galling in nematode infested soil. Tetsukabuto did not reduce numbers of M. incognita J2 in either soil or roots either year. There were no differences in nematode numbers, galling, or plant growth parameters among the watermelon rootstocks tested. The use of resistant rootstocks has great potential for improving nematode control in the absence of soil fumigants.
PMCID: PMC3547354  PMID: 23431109
Citrullus lanatus; Cucumis melo; Cucumis metuliferus; Cucurbita moschata; grafting; Meloidogyne incognita; muskmelon; root-knot nematode; Solanum lycopersicum; ‘Tetsukabuto’; tomato; watermelon
13.  Comparison of Meldola’s Blue Staining and Hatching Assay with Potato Root Diffusate for Assessment of Globodera sp. Egg Viability 
Journal of Nematology  2011;43(3-4):182-186.
Laboratory-based methods to test egg viability include staining with Meldola’s Blue and/or juvenile (J2) hatching assays using potato root diffusate (PRD). These two methods have not been tested under identical conditions to directly compare their assessments of Globodera egg viability. Using two bioassay strategies, cysts from a Globodera sp. population found in Oregon were subjected to both viability assessment methods. In strategy one, intact cysts were first stained with Meldola’s Blue (primary staining) and eggs were then transferred to PRD (secondary hatching). In the second strategy, intact cysts were exposed to PRD (primary hatching) and then unhatched eggs were transferred to Meldola’s Blue (secondary staining). Two different cohorts of cysts were evaluated using these experimental strategies: cohort 1 was comprised of cysts produced on potato in the greenhouse that exhibited low hatch when exposed to PRD and cohort 2 consisted of field-collected cysts whose eggs yielded significant hatch when exposed to PRD. Percentage viability was calculated and is expressed as the number of hatched J2 or unstained eggs/total number of eggs within a cyst. With field-produced cysts, primary staining with Meldola’s Blue and hatching with PRD produced similar viability estimates, with averages of 74.9% and 76.3%, respectively. In contrast, with greenhouse-produced cysts the two methods yielded much lower and unequal estimates 32.4% to 2.2%, respectively for primary hatching and staining methods. In addition, J2 hatch from unstained (viable) greenhouse-produced eggs was 13.7% after secondary exposure to PRD compared to 61.5% for field-produced eggs. The majority of eggs remaining unhatched after primary exposure to PRD (> 87%) stained with Meldola’s Blue regardless of cyst cohort. Staining with Meldola’s Blue provided a conservative assessment of egg viability compared to hatch assay with PRD regardless of diapause.
PMCID: PMC3547355  PMID: 23429205
cyst nematode; egg hatch; Globodera; juvenile; Meldola’s Blue; method; potato root diffusate
14.  Grain Yield and Heterosis of Maize Hybrids under Nematode Infested and Nematicide Treated Conditions 
Journal of Nematology  2011;43(3-4):209-219.
Plant-parasitic nematodes are present on maize but resistant genotypes have not been identified in Uganda. This study was aimed at determining the level of nematode resistance among F1 hybrids, and to estimate grain yield, heterosis and yield losses associated with maize hybrids under nematode infestation. The 30 F1 hybrids and two local checks were evaluated in a split plot design with nematode treatment (nematode infested versus nematicide treated) as the whole plot factor, and the hybrids as subplot factors arranged in an 8 x 4 alpha-lattice design. The experiment was conducted simultaneously at three sites. The hybrids were also evaluated in a split plot design under greenhouse conditions at IITA-Namulonge. Results revealed 24 P. zeae susceptible hybrids compared to only six P. zeae resistant hybrids. Grain yield across sites was higher by about 400 kg ha-1 under nematicide treatment than under nematode infestation. The nematode tolerant/resistant hybrids exhibited yields ranging from 5.0 to 8.4 t ha-1 compared to 5.0 t ha-1 obtained from the best check. Grain yield loss was up to 28% among susceptible hybrids, indicating substantial economic yield losses due to nematodes. Under field conditions, desired heterosis was recorded on 18 hybrids for P. zeae, and on three hybrids for Meloidogyne spp. Under nematode infestation, only 16 hybrids had higher relative yield compared to the mean of both checks, the best check and the trial mean, whereas it was 20 hybrids under nematicide treated plots. Overall, most outstanding hybrids under nematode infestation were CML395/MP709, CML312/5057, CML312/CML206, CML312/CML444, CML395/CML312 and CML312/CML395. Therefore, grain yield loss due to nematodes is existent but can be significantly reduced by growing nematode resistant hybrids.
PMCID: PMC3547356  PMID: 23429435
Grain yield; heterosis; Maize hybrid; Meloidogyne spp.; Pratylenchus zeae; Yield loss
15.  Research Collaborations Can Improve the Use of Organic Amendments for Plant-Parasitic Nematode Management 
Journal of Nematology  2011;43(2):126-128.
The concept of utilizing organic amendments to manage plant-parasitic nematodes is not new, but the widespread implementation of this management practice has still not been realized. The use of organic amendments for plant-parasitic nematode management is a complex process requiring an understanding of the transformation and generation of active compounds. As a result, research endeavors to understand and maximize the use of this management practice require a multidisciplinary approach which draws upon the expertise of nematologists, microbiologists, natural product chemists and soil scientists. Factors that require analysis and clarification include lethal concentration levels of organic amendments necessary to kill nematodes; chemical composition of incorporation material; fate and exposure potential to nematodes of compounds released into the soil; and the influence of environmental factors (i.e., temperature, microbial community, soil type) on the activity of organic amendments. Examples of research conducted in a collaborative manner with rye (Secale cereale) and a biosolid amendment demonstrate the power of multidisciplinary research. Only through collaborative research can consistent and reliable nematode suppression with organic amendments be achieved.
PMCID: PMC3380455  PMID: 22791924
16.  The Effects of Root-knot Nematode Infection and Mi-mediated Nematode Resistance in Tomato on Plant Fitness 
Journal of Nematology  2011;43(2):82-89.
The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.
PMCID: PMC3380456  PMID: 22791916
costs and benefits of resistance; Meloidogyne javanica; Mi-1; Mi-1.2; nematode resistance; plant reproductive fitness; R gene; root-knot nematode; Solanum lycopersicum; tomato
17.  Evaluation of Econem™, a Formulated Pasteuria sp. Bionematicide, for Management of Belonolaimus longicaudatus on Golf Course Turf1 
Journal of Nematology  2011;43(2):101-109.
In 2010, a turfgrass bionematicide containing in vitro produced Pasteuria sp. for management of Belonolaimus longicaudatus was launched under the tradename Econem™. Greenhouse pot studies and field trials on golf course fairways and tee boxes evaluated Econem at varied rates and application frequencies. Trials on putting greens compared efficacy of three applications of Econem at 98 kg/ha to untreated controls and 1,3-dichloropropene at 53 kg a.i/ha. Further putting green trials evaluated the ability of three applications of Econem at 98 kg/ha to prevent resurgence of population densities of B. longicaudatus following treatment with 1,3-dichloropropene at 53 kg a.i./ha. None of the Econem treatments in pot studies were effective at reducing B. longicaudatus numbers (P ≤ 0.05). Econem was associated with reduction in population densities of B. longicaudatus (P ≤ 0.1) on only a single sampling date in one of the eight field trials and did not improve turf health in any of the trials (P > 0.1). These results did not indicate that Econem is an effective treatment for management of B. longicaudatus on golf course turf.
PMCID: PMC3380457  PMID: 22791919
Belonolaimus longicaudatus; bermudagrass; biological control; biopesticide; Cynodon spp.; nematode management; Pasteuria sp.; sting nematode; turfgrass
18.  Trends in the Journal of Nematology, 1969-2009: Authors, States, Nematodes, and Subject Matter 
Journal of Nematology  2011;43(2):63-68.
Issues of the Journal of Nematology from 1969-2009 were examined to determine trends in authorship and subject matter. Data were collected on authors, affiliations, locations, funding, nematodes, and nematological subject matter, and then compared among the 4 decades involved. Some of the more prominent changes noted included: a decrease (P < 0.05) in the number of papers published in the Journal of Nematology in the 1990s and 2000s from a peak in the 1980s; an increase (P < 0.05) in number of authors per paper in each decade; an increased (P < 0.05) percentage of international authors in the 1990s and 2000s compared to 1970s; and changing roles of the United States Department of Agriculture (USDA) and different states over a period of 4 decades. Plant-parasitic nematodes were the main organisms studied in 73.4% of all papers published the Journal of Nematology from 1969-2009. The greatest changes in subject matter were increases in papers on biological control and resistance in the 1990s and 2000s compared to the 1970s and 1980s. Additional trends and subjects are discussed, and data are provided comparing differences among the 4 decades for various aspects of nematology.
PMCID: PMC3380458  PMID: 22791914
biological control; ecology; grant funding; nematode management; nematology research; plant-parasitic nematodes; resistance; taxonomy
19.  Virulence of Meloidogyne incognita to expression of N gene in pepper 
Journal of Nematology  2011;43(2):90-94.
Four pepper genotypes classified as resistant and four pepper genotypes classified as susceptible to several avirulent populations of M. incognita were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be virulent to resistant bell pepper (Capsicum annuum) in preliminary tests. The virulent population of M. incognita originated from a commercial bell pepper field in California. The resistant pepper genotypes used in all experiments were the Capsicum annuum cultivars Charleston Belle, Carolina Wonder, and Carolina Cayenne, and the C. chinense cultigen PA-426. The susceptible pepper genotypes used in the experiments were the C. annuum cultivars Keystone Resistant Giant, Yolo Wonder B, California Wonder, and the C. chinense cultigen PA-350. Root gall indices (GI) were ≥ 3.0 for all genotypes in both tests except for PA-426 (GI=2.57) in test 1 and ‘Carolina Cayenne’ (GI=2.83) in test 2. Numbers of eggs per gram fresh root weight ranged from 20,635 to 141,319 and reproductive indices ranged from 1.20 to 27.2 for the pepper genotypes in both tests, indicating that all eight pepper genotypes tested were susceptible to the M. incognita population used in these tests. The M. incognita population used in these studies overcame resistance conferred by the N gene in all resistant genotypes of both C. annuum and C. chinense.
PMCID: PMC3380459  PMID: 22791917
Capsicum annuum var. annuum; Capsicum chinense; Meloidogyne incognita; methyl bromide alternatives; nematode resistance
20.  Overview of Organic Amendments for Management of Plant-Parasitic Nematodes, with Case Studies from Florida 
Journal of Nematology  2011;43(2):69-81.
Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.
PMCID: PMC3380460  PMID: 22791915
biological control; compost; free-living nematodes; mulch; organic agriculture; pest management; soil food web; sustainable agriculture
21.  Phosphonate fertilizers suppressed root knot nematodes Meloidogyne javanica and M. incognita 
Journal of Nematology  2011;43(2):95-100.
The efficacy of the phosphonate fertilizers, Calphos® (a.i. calcium phosphonate), Magphos® (a.i. magnesium phosphonate and potassium phosphonate) and Phosphoros® (a.i. potassium phosphonate) against two species of root knot nematodes (RKN), Meloidogyne javanica and M. incognita is evaluated. Laboratory experiments showed that Calphos®, Magphos® and their main components inhibited egg hatching and caused 100% mortality of the second stage juveniles (J2s) of the two RKN species; the hatching inhibition effects persisted after transferring the egg masses of both species to water. However, Phosphoros® (0.5%) did not suppress egg hatching or the survival of J2s of both RKN species. No hatching occurred when egg masses were treated for one week with the nematicide Vydate L® (2 ml/l), however, J2s hatched when the Vydate L® treated egg masses were moved to water. The glasshouse study indicated that Magphos®, Calphos® and Phosphoros® reduced root galling caused by M. javanica by 98, 66 and 47%, respectively, in comparison to the untreated controls. Magphos® resulted in the lowest number of root galls formed by M. incognita, the reduction was 84%. In contrast, Calphos® and Phosphoros® reduced galling by 47 and 39%, respectively. The Magphos® treatment resulted in the lowest numbers of egg masses and the lowest reproductive factor (RF) of both nematode species. However, plants treated with Phosphoros® resulted in higher foliage weights compared with the application of the other two fertilizers and the untreated plants.
PMCID: PMC3380461  PMID: 22791918
Calphos®; Magphos®; Phosphoros®; RKN; hatching; mortality
22.   
Journal of Nematology  2011;43(2):118.
PMCID: PMC3380462  PMID: 22791921
23.  Sustainable Approaches to the Management of Plant-parasitic Nematodes and Disease Complexes 
Journal of Nematology  2011;43(2):122-125.
Physical, chemical, and biological factors of soil may reduce damage caused by plant-parasitic nematodes. Suppression of plant-parasitic nematodes is particularly challenging in soils in which there are short crop sequences, sequential susceptible host crops, or infestations of multiple nematode species. In southern Indiana, a watermelon production system involving rotations with soybean and corn does not suppress Meloidogyne incognita, but several aspects of such systems can be modified to reduce nematode damage in an integrated management approach. Cash crops with resistance to M. incognita can be used to reduce population densities of M. incognita. Small grains as cover crops can be replaced by cover crops with resistance to M. incognita or by crops with biofumigation potential. Mycorrhizal fungal inoculations of potting mixes during transplanting production of watermelon seedlings may improve early crop establishment. Other approaches to nematode management utilize soil suppressiveness. One-year rotations of soybean with corn neither reduced the soil-borne complex of sudden death syndrome (SDS) nor improved soybean root health over that in soybean monoculture. Reduced tillage combined with crop rotation may reduce the activity of soil-borne pathogens in some soils. For example in a long-term trial, numbers of Heterodera glycines and severity of foliar SDS symptoms were reduced under minimum tillage. Thus, sustainable management strategies require holistic approaches that consider entire production systems rather than focus on a single crop in its year of production.
PMCID: PMC3380463  PMID: 22791923
24.  The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides 
Journal of Nematology  2011;43(2):119-121.
Brassica plants once incorporated into soil as green manures have recently been shown to have biofumigant properties and have the potential of controlling plant-parasitic nematodes. In Washington State, plant-parasitic nematodes are successfully managed with synthetic nematicides. However, some of the synthetic nematicides became unavailable recently or their supply is limited leaving growers with few choices to control plant-parasitic nematodes. The objective of this project was to evaluate the effects of Brassica green manures on their own and in combination with reduced rates of synthetic nematicides on plant-parasitic nematodes and free living nematodes. In a greenhouse experiment and field trials in three seasons, Brassica green manures in combination with half the recommended rate of 1,3-dichloropropene (1,3-D, Telone) reduced root knot nematode, Meloidogyne chitwoodi to below detection levels, and reduced lesion nematodes, Pratylenchus penetrans and stubby root nematodes, Paratrichodorus allius, to below economic thresholds. The combination treatments did not affect the beneficial free-living nematode populations and the non-pathogenic Pseudomonas. The total cost of growing and soil-incorporating Brassica crops as green manures in combination with reduced rates of 1,3-D was approximately 35% lower than the present commercial costs for application for the full rate of this fumigant. Integrating conventional management practices with novel techniques fosters sustainability of production systems and can increase economic benefit to producers while reducing chemical input.
PMCID: PMC3380464  PMID: 22791922
Plant parasitic nematodes; free living nematodes; Brassicaceae green manures; Telone
25.  Control of Root-knot Nematodes on Tomato in Stone Wool Substrate with Biological Nematicides 
Journal of Nematology  2011;43(2):110-117.
The efficacy of four biological nematicides on root-galling, root-knot nematode (Meloidogyne incognita) reproduction, and shoot weight of tomato (Solanum lycopersicum) grown in stone wool substrate or in pots with sandy soil was compared to an oxamyl treatment and a non-treated control. In stone wool grown tomato, Avid® (a.i. abamectin) was highly effective when applied as a drench at time of nematode inoculation. It strongly reduced root-galling and nematode reproduction, and prevented a reduction in tomato shoot weight. However, applying the product one week before, or two weeks after nematode inoculation was largely ineffective. This shows that Avid® has short-lived, non-systemic activity. The effects of Avid® on nematode symptoms and reproduction on soil-grown tomato were only very minor, probably due to the known strong adsorption of the active ingredient abamectin to soil particles. The neem derived product Ornazin® strongly reduced tomato root-galling and nematode reproduction only in stone wool and only when applied as a drench one week prior to nematode inoculation, suggesting a local systemic activity or modification of the root system, rendering them less suitable host for the nematodes. This application however also had some phytotoxic effect, reducing tomato shoot weights. The other two products, Nema-Q™ and DiTera®, did not result in strong or consistent effects on nematode symptoms or reproduction.
PMCID: PMC3380465  PMID: 22791920
control; Meloidogyne incognita; Solanum lycopersicum; stone wool; substrate

Results 1-25 (32)