Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)
Year of Publication
more »
Document Types
1.  Inheritance of Resistance to Meloidoygne incognita in Primitive Cotton Accessions from Mexico 
Journal of Nematology  2010;42(4):352-358.
Few sources of resistance to root-knot nematodes (Meloidogyne incognita) in upland cotton (Gossypium hirsutum) have been utilized to develop resistant cultivars, making this resistance vulnerable to virulence in the pathogen population. The objectives of this study were to determine the inheritance of resistance in five primitive accessions of G. hirsutum (TX1174, TX1440, TX2076, TX2079, and TX2107) and to determine allelic relations with the genes for resistance in the genotypes Clevewilt-6 (CW) and Wild Mexico Jack Jones (WMJJ). A half-diallel experimental design was used to create 28 populations from crosses among these seven sources of resistance and the susceptible cultivar DeltaPine 90 (DP90). Resistance to M. incognita was measured as eggs per g roots in the parents, F1 and F2 generations of each cross. The resistance in CW and WMJJ was inherited as recessive traits, as reported previously for CW, whereas the resistance in the TX accessions was inherited as a dominant trait. Chi square analysis of segregation of resistance in the F2 was used to estimate the numbers of genes that conditioned resistance. Resistance in CW and WMJJ appeared to be a multigenic trait whereas the resistance in the TX accessions best fit either a one or two gene model. The TX accessions were screened with nine SSR markers linked to resistance loci in other cotton genotypes. The TX accessions lacked the allele amplified by SSR marker CR316 and linked to resistance in CW and other resistant genotypes derived from this source. Four of five TX genotypes lacked the amplification products from the marker BNL1231 that is also associated with the resistant allele on Chromosome 11 in WMJJ, CW, NemX, M120 RNR and Auburn 634 RNR. However, all five TX genotypes produced the same amplification products from three SSR markers linked to the resistant allele on Chromosome 14 in M120 RNR and M240 RNR. The TX accessions have unique resistance genes that are likely to be useful in efforts to develop resistant cotton cultivars with increased durability.
PMCID: PMC3380526  PMID: 22736869
Allelic relationships; cotton; Gossypium hirsutum; host resistance; inheritance of resistance; Meloidogyne incognita; molecular markers; root-knot nematode
2.  Distribution and Prevalence of Parasitic Nematodes of Cowpea (Vigna unguiculata) in Burkina Faso 
Journal of Nematology  2009;41(2):120-127.
A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus.
PMCID: PMC3365312  PMID: 22661784
Agro-climatic zones; Burkina Faso; cowpea; Criconemella; detection; Helicotylenchus; Meloidogyne; nematode survey; Pratylenchus; Rotylenchulus; Scutellonema; Telotylenchus; Tylenchorhynchus; Vigna unguiculata; West Africa
3.  The Future of Nematode Management in Cotton 
Journal of Nematology  2007;39(4):283-294.
The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has received increased recognition and attention in the United States in the recent past. This paper summarizes the remarks made during a symposium of the same title that was held in July 2007 at the joint meeting of the Society of Nematologists and the American Phytopathological Society in San Diego, California. Although several cultural practices, including crop rotation, can be effective in suppressing the populations of the important nematode pathogens of cotton, the economic realities of cotton production limit their use. The use of nematicides is also limited by issues of efficacy and economics. There is a need for development of chemistries that will address these limitations. Also needed are systems that would enable precise nematicide application in terms of rate and placement only in areas where nematode population densities warrant application. Substantial progress is being made in the identification, characterization and mapping of loci for resistance to Meloidogyne incognita and Rotylenchulus reniformis. These data will lead to efficient marker-assisted selection systems that will likely result in development and release of nematode-resistant cotton cultivars with superior yield potential and high fiber quality.
PMCID: PMC2586512  PMID: 19259500
4.  Phenotypic Expression of rkn1-Mediated Meloidogyne incognita Resistance in Gossypium hirsutum Populations 
Journal of nematology  2006;38(2):250-257.
The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton.
PMCID: PMC2586458  PMID: 19259455
cotton; Gossypium hirsutum; Meloidogyne incognita; resistance; rkn1; root-knot nematode; phenotypic expression; transgressive segregation
5.  Dynamics of Meloidogyne incognita Virulence to Resistance Genes Rk and Rk2 in Cowpea 
Journal of nematology  2006;38(1):90-96.
The virulence index of three Meloidogyne incognita field isolates to the resistance gene Rk in cowpea was 0%, 75%, and 120%, with the index measured as reproduction on resistant plants as a percentage of the reproduction on susceptible plants. Continuous culture of the 75% virulent isolate on susceptible tomato for more than 5 years (about 25 generations) resulted in virulence decline to about 4%. The rate of the decline in virulence was described by exponential decay, indicating the progressive loss of virulence on a susceptible host. The 120% virulent isolate declined to 90% virulence during five generations on susceptible cowpea. Following virulence decline, the two isolates were compared over 5 years in inoculated field microplots both separately and as a mixture on susceptible, gene Rk, and gene Rk2 cowpea plants. At infestation of the plots, the two isolates were 1.2% and 92.0% virulent, respectively, to gene Rk and 0.2% and 8.1% virulent, respectively, to gene Rk2. Virulence to gene Rk in the two isolates and in mixture increased under 5 years of continuous Rk cowpea plants to 129% to 172% and under Rk2 cowpea plants to 113% to 139 % by year 5. Virulence to gene Rk2 increased during continuous cropping with Rk cowpea plants to 42% to 47% and with Rk2 cowpea plants to 22% to 48% by year 5. Selection of Rk2-virulence was slower in the isolate with low itt-virulence. The virulence to both genes Rk and Rk2 in the mixed population was not different from that in the highly virulent isolate by year 5 of all cropping combinations. Selection of Rk2-virulence on plants with Rk, and vice versa, indicated at least partial overlap of gene specificity between Rk and Rk2 with respect to selection of nematode virulence. This observation should be considered when resistance is used in cowpea rotations.
PMCID: PMC2586430  PMID: 19259435
Cowpea; genetic variation; Meloidogyne incognita; resistance; root-knot nematode; selection; Vigna unguiculata; virulence
6.  Fitness of Virulent Meloidogyne incognita Isolates on Susceptible and Resistant Cowpea 
Journal of Nematology  2005;37(4):457-466.
A study of life-history traits was made to determine factors associated with the fitness of Meloidogyne incognita isolates virulent to resistance gene Rk in cowpea. Egg hatch, root penetration, egg mass production, and fecundity (eggs per egg mass) of avirulent and virulent phenotypes were compared among M. incognita isolates, isofemale lines, and single descent lines over multiple generations on resistant and susceptible cowpea. Variation (P ≤ 0.05) in both hatch and root penetration rates was found among isolates at a given generation. However, this variation was not consistent within nematode lines among generations, and there was no correlation with level of virulence, except for penetration and virulence on resistant cowpea at generation 20. Resistant and susceptible cowpea roots were penetrated at similar levels. Differences in reproductive factors on resistant plants were correlated with levels of virulence expression. In some isofemale lines, single descent lines, and isolates, lower (P ≤ 0.05) rates of egg mass production and fecundity on susceptible cowpea were associated with virulence to Rk, indicating a trade-off between reproductive fitness and virulence. Other virulent nematode lines from the same isolates did not have reduced reproductive ability on susceptible cowpea over 27 generations. Thus, virulent lineages varied in reproductive ability on susceptible cowpea, contributing to adaptation and maintenance of virulence within M. incognita populations under stabilizing selection.
PMCID: PMC2620988  PMID: 19262891
cowpea; fitness; genetic variation; Meloidogyne incognita; resistance; root-knot nematode; selection; Vigna unguiculata; virulence
7.  Isofemale Line Analysis of Meloidogyne incognita Virulence to Cowpea Resistance Gene Rk 
Journal of Nematology  2005;37(4):448-456.
Isofemale lines (IFL) from single egg masses were studied for genetic variation in Meloidogyne incognita isolates avirulent and virulent to the resistance gene Rk in cowpea (Vigna unguiculata). In parental isolates cultured on susceptible and resistant cowpea, the virulent isolate contained 100% and the avirulent isolate 7% virulent lineages. Virulence was selected from the avirulent isolate within eight generations on resistant cowpea (lineage selection). In addition, virulence was selected from avirulent females (individual selection). Virulence differed (P ≤ 0.05) both within and between cohorts of IFL cultured for up to 27 generations on susceptible or resistant cowpea. Distinct virulence profiles were observed among IFL. Some remained avirulent on susceptible plants and became extinct on resistant plants; some remained virulent on resistant and susceptible plants; some changed from avirulent to virulent on resistant plants; and others changed from virulent to avirulent on susceptible plants. Also, some IFL increased in virulence on susceptible plants. Single descent lines from IFL showed similar patterns of virulence for up to six generations. These results revealed considerable genetic variation in virulence in a mitotic parthenogenetic nematode population. The frequencies of lineages with stable or changeable virulence and avirulence phenotypes determined the overall virulence potential of the population.
PMCID: PMC2620992  PMID: 19262890
cowpea; genetic variation; Meloidogyne incognita; resistance; root-knot nematode; selection; Vigna unguiculata; virulence
8.  Nucleotide Substitution Patterning within the Meloidogyne rDNA D3 Region and Its Evolutionary Implications 
Journal of Nematology  2003;35(4):404-410.
Evolutionary relationships based on nucleotide variation within the D3 26S rDNA region were examined among acollection of seven Meloidogyne hapla isolates and seven isolates of M. arenaria, M. incognita, and M. javanica. Using D3A and D3B primers, a 350-bp region was PCR amplified from genomic DNA and double-stranded nucleotide sequence obtained. Phylogenetic analyses using three independent clustering methods all provided support for a division between the automictic M. hapla and the apomictic M. arenaria, M. incognita, and M. javanica. A nucleotide sequence character distinguishing M. hapla from the three apomictic species was a 3-bp insertion within the interior of the D3 region. The three apomictic species shared a common D3 haplotype, suggesting a recent branching. Single M. hapla individuals contained two different haplotypes, differentiated by a Sau3AI restriction site polymorphism. Isolates of M. javanica appeared to have only one haplotype, while M. incognita and M. arenaria maintained more than one haplotype in an isolate.
PMCID: PMC2620688  PMID: 19262771
evolution; Meloidogyne arenaria; M. hapla; M. incognita; M. javanica; phylogeny; rDNA; reproductive modes; root-knot nematodes; speciation
9.  Evaluation of NemX, a New Cultivar of Cotton with High Resistance to Meloidogyne incognita 
Journal of Nematology  1997;29(4):531-537.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.
PMCID: PMC2619803  PMID: 19274190
cotton; Fusarium wilt disease complex; Gossypium hirsutum; Meloidogyne incognita; nematode; resistance; root-knot; growth pouch
10.  Genetic Variation in Nacobbus aberrans: An Approach toward Taxonomic Resolution 
Journal of Nematology  1997;29(3):241-249.
Biochemical and molecular analyses of genetic variation were evaluated to address the taxonomic status of Nacobbus aberrans. Isolates from Mexico, Peru, and Argentina, cultured on tomato in the greenhouse, were analyzed with respect to isozyme and DNA marker variation. Although acid phosphatase and malate dehydrogenase revealed distinct profiles for each isolate, non-specific esterases revealed possible affinities between the Peruvian isolates and between the isolates from Mexico and Peru. Two of l 0 RAPD primers revealed affinities suggested by esterase profiles. RFLP analysis of the rDNA repeating unit with six restriction enzymes revealed identical cleavage patterns between the Peru isolates and a distinct profile shared by isolates from Mexico and Argentina. Nucleotide sequence analysis of the 5.8S rRNA coding region revealed differences among the four isolates at eight of 157 positions; sequences of the Peruvian isolates differed from each other at only one position, whereas the Mexican and Argentine isolates were identical and could be distinguished from the Peruvian isolates. A distance matrix from unweighted pairwise comparisons of the 5.8S rDNA revealed apparent elevated intraspecific divergence in N. aberrans comparable to intergeneric divergence between Heterodera and Globodera. Analysis of additional N. aberrans isolates from throughout the distribution range should help determine the full extent of intraspecific genetic variation that underlies the phenotypic and morphologic diversity of the genus.
PMCID: PMC2619799  PMID: 19274155
esterase; false root-knot nematode; molecular biology; Nacobbus aberrans; nematode; RAPD; rDNA; RFLP; 5.8S rRNA; taxonomy
11.  Disinfection Alternatives for Control of Ditylenchus dipsaci in Garlic Seed Cloves 
Journal of Nematology  1995;27(4):448-456.
Hot-water dips with and without the additives abamectin and sodium hypochlorite were evaluated for control of Ditylenchus dipsaci infection of garlic seed cloves. All treatments were compared to hot water-formalin clove dip disinfection and to nontreated infected controls for garlic emergence, midseason infection, bulb damage, and yield at harvest in field plots in 12 experiments. Hot-water treatments without additives only partially controlled D. dipsaci when a warming presoak dip (38 C) of 30, 45, or 60 minutes' duration was followed by a hot-water dip (49 C) of 15-30 minutes' duration. Exposure to 49 C for 30 minutes caused slight retardation of garlic emergence, although normal stand was established. Abamectin at 10-20 ppm as the 20-minute hot dip (49 C) or as a 20-minute cool dip (18 C) following a 20-minute hot-water dip and sodium hypochlorite at 1.052-1.313% aqueous solution as the 20-minute hot dip were highly effective in controlling D. dipsaci and were noninjurious to garlic seed cloves. None of these treatments was as effective as a hot water-formalin dip and were noneradicative, but showed high efficacy on heavily infected seed cloves relative to nontreated controls. Abamectin was most effective as a cool dip. These abamectin cool-dip (following hot-water dip) and sodium hypochlorite hot-dip treatments can be considered as effective alternatives to replace formalin as a dip additive for control of clove-borne D. dipsaci. Sodium hypochlorite was less effective as the cool dip, and at concentrations of 1.75-2.63% was phytotoxic to garlic.
PMCID: PMC2619639  PMID: 19277311
abamectin; Allium sativum; Ditylenchus dipsaci; formaldehyde; garlic; hot-water dip; seed-borne infection; sodium hypochlorite; stem nematode
12.  Plant and Soil Nematodes: Societal Impact and Focus for the Future. 
Journal of Nematology  1994;26(2):127-137.
Plant and soil nematodes significandy impact our lives. Therefore, we must understand and manage these complex organisms so that we may continue to develop and sustain our food production systems, our natural resources, our environment, and our quality of life. This publication looks specifically at soil and plant nematology. First, the societal impact of nematodes and benefits of nematology research are briefly presented. Next, the opportunities facing nematology in the next decade are outlined, as well as the resources needed to address these priorities. The safety and sustainability of U.S. food and fiber production depends on public and administrative understanding of the importance of nematodes, the drastic effects of nematodes on many agricultural and horticultural crops, and the current research priorities of nematology.
PMCID: PMC2619488  PMID: 19279875
alternative management tactics; behavior; benefit to society; beneficial nematodes; biochemistry; biological control; constraints in nematology; control; crop rotation; cultural practice; ecology; education; environment; extension; diagnostics; funding; genetics; host-parasite interaction; information transfer; molecular genetics; nematicide; nematode; nematology; nematode management; nutrient cycling; pesticide; plant parasites; research goals; research priorities; resistance; resource; science of nematology; society; spread; sustainable agriculture; systematics
13.  Effect of Temperature on Expression of Resistance to Meloidogyne spp. In Common Bean (Phaseolus vulgaris) 
Journal of Nematology  1990;22(4):446-451.
The effect of soil temperature on the expression of resistance in several common bean lines carrying resistance to root-knot nematodes (Meloidogyne spp.) was studied under controlled temperatures in temperature tank and growth chamber conditions. Resistance to M. javanica and M. incognita race 1 in bean lines A315, A328, A445, G1805, and G2618 was stable at 24-30 C. However, there was a significant increase in reproduction of M. javanica on A315, A328, and A445 when temperature was increased from 26 to 30 C. This increase did not reflect a change from a resistant to a susceptible reaction or classification. Resistance in A315 is derived from G1805, whereas resistance in A328 and A445 is derived from G2618. Alabama No. 1, PI 165426, and PI 165435, with resistance to M. incognita race 2, were heat stressed at temperatures above 27 C. Resistance to M. incognita race 2 in Alabama No. 1 and PI 165435 was lost at 30 C, but PI 165426 supported low reproduction of M. incognita race 2 at all temperatures. Poor root development at 30 C may have been responsible, in part, for the poor development of M. incognita race 2 on PI 165426.
PMCID: PMC2619079  PMID: 19287744
common bean; heat stability; Meloidogyne spp.; Phaseolus vulgaris; resistance; root-knot nematode
14.  Resistance in Lycopersicon peruvianum to Isolates of Mi Gene-Compatible Meloidogyne Populations 
Journal of Nematology  1990;22(4):585-589.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol.
PMCID: PMC2619063  PMID: 19287762
Lycopersicon esculentum; Lycopersicon peruvianum; Meloidogyne arenaria; Meloidogyne hapla; Meloidogyne incognita; Meloidogyne javanica; resistance; root-knot nematode; tomato
15.  Resistance in Triticum and Aegilops spp. to Meloidogyne chitwoodi 
Journal of Nematology  1989;21(4S):632-634.
Two lines of Aegilops squarrosa (G 3489 and G 1279) and Triticum cultivars Anza, Cocorit, Produra, Chinese Spring, Nugaines, and a synthetic hexaploid were screened for resistance to Meloidogyne chitwoodi. Reproduction of M. chitwoodi, expressed as eggs per gram root, was low (P < 0.01) on G 3489 and the synthetic hexaploid. Reproduction on all other cultivars tested was high although differences (P < 0.01) existed among them.
PMCID: PMC2618992  PMID: 19287662
Aegilops squarrosa; Columbia root-knot nematode; Meloidogyne chitwoodi; resistance; Triticum aestivum; wheat
16.  Resistance to Meloidogyne spp. in Allohexaploid Wheat Derived from Triticum turgidum and Aegilops squarrosa 
Journal of Nematology  1989;21(1):42-47.
Expression of resistance to Meloidogyne incognita and M. javanica from Aegilops squarrosa was studied in a synthetic allohexaploid produced from Triticum turgidum var. durum cv. Produra and Ae. squarrosa G 3489. The reproductive rate of different races of M. incognita and M. javanica, expressed in eggs per gram of fresh root, was low (P < 0.05) on the synthetic allohexaploid and the resistant parent, Ae. squarrosa G 3489, compared with different bread and durum wheat cultivars. Reproduction of race 2 and race 3 of M. incognita and an isolate of M. javanica was studied on the synthetic allohexaploid and seven cultivars of T. aestivum: Anza, Coker 747, Coker 68-15, Delta Queen, Double Crop, McNair 1813, and Southern Bell. The latter six cultivars are grown in the southeastern United States and reportedly were resistant to M. incognita. Significant differences (P < 0.05) were detected in nematode reproduction on the seven bread wheat cultivars. Reproduction of M. incognita race 3 and M. javanica was highest on Anza. Reproductive rates on the six southeastern United States bread wheat cultivars varied both within and among nematode isolates. The lowest reproductive rates of the three root-knot isolates were detected in the synthetic allohexaploid.
PMCID: PMC2618899  PMID: 19287575
Aegilops squarrosa; Meloidogyne incognita; M. javanica; resistance; root-knot nematode; Triticum aestivum; T. turgidum var. durum; wheat
17.  Screening of a Granular Chelate of Metham-Zinc for Nematicidal Activity Using Citrus and Root-knot Nematodes 
Journal of Nematology  1988;20(Annals 2):11-14.
A granular formulation of a chelate of metham-zinc (CMZ) which liberates the biocidal methyl isothiocyanate was tested for nematicidal activity on Tylenchulus semipenetrans in a jar soil screening and on Meloidogyne javanica (greenhouse test) and M. incognita (field test) infecting tomato. Comparisons were made with 1,3-D in the jar and pot experiments. The CMZ caused only 3.9% mortality of citrus nematode juveniles at 1.0 μg a.i./g soil, but 95.4% mortality at 10.0 μg a.i./g and 100.0% at 100.0 μg a.i./g. CMZ at 10.0 and 100.0 μg a.i./g significantly reduced tomato root infections by M. javanica in the pot test relative to the untreated control. In the field test, CMZ (11.5 g a.i./m² calibration rate) reduced M. incognita populations in the zone of incorporation but not below it, thus failing to provide season-long control for tomato. This material has good nematicidal activity at 10 μg a.i./g or more, but its effectiveness in the field may be limited by its lack of movement.
PMCID: PMC2618882  PMID: 19290294
chemical control; citrus nematode; Lycopersicon esculentum; Meloidogyne incognita; Meloidogyne javanica; methyl isothiocyanate; root-knot nematode; tomato; Tylenchulus semipenetrans; 1,3-dichloropropene
18.  Meloidogyne incognita Resistance Characteristics in Tomato Genotypes Developed for Processing 
Journal of Nematology  1986;18(3):353-358.
Nine resistant processing tomato (Lycopersicon esculentum) cultivars and advanced lines were compared with four susceptible cultivars in 1,3-dichloropropene-fumigated and nontreated plots on Meloidogyne incognita-infested sites over 3 years. Yield of all resistant genotypes grown in nontreated and nematicide-treated plots did not differ and was greater than yield of susceptible genotypes. M. incognita initial soil population densities caused 39.3-56.5% significant (P = 0.05) yield suppressions of susceptible genotypes. Nematode injury to susceptible plants usually caused both fruit soluble solids content and pH to increase significantly (P = 0.05). Only trace nematode reproduction occurred on resistant genotypes in nontreated plots, whereas large population density increases occurred on susceptible genotypes. Slightly greater nematode reproduction occurred on resistant genotypes at the southern desert location, where soil temperature exceeded 30 C, than at other locations. At two locations resistant MOX 3076 supported greater reproduction than other resistant genotypes.
PMCID: PMC2618565  PMID: 19294190
fruit quality; fruit yield; Lycopersicon esculentum; tomato; Meloidogyne incognita; root-knot nematode; population dynamics; resistance; soil fumigation; 1,3-dichloropropene
19.  Control of Ditylenchus dipsaci in Infected Garlic Seed Cloves by Nonfumigant Nematicides 
Journal of Nematology  1986;18(1):66-73.
Different rates of granular formulations ofaldicarb, carbofuran, ethoprop, fensulfothion, and phenamiphos were applied directly onto garlic seed cloves in the seed furrow in sandy clay loam, clay loam, and loam soils at planting to assess efficacy for control of Ditylenchus dipsaci in infected seed cloves. All treatments were compared to hotwater-formalin clove dip disinfection treatment and to nontreated infected controls. Aldicarb and phenamiphos at 2.52 and 5.04 kg a.i./ ha, but not at lower rates, effectively suppressed infection by D. dipsaci and increased yields. Although both nematicides slightly slowed the rate of plant emergence, normal stands were established. Trace levels of infection occurred in all treatments, including the hotwater-formalin dip. Carbofuran at 5.04 kg a.i./ha controlled the nematode but was phytotoxic. Ethoprop was phytotoxic. Fensulfothion did not control D. dipsaci even at the highest application rate, 8.90 kg a.i./ha. Single and multiple applications of oxamyl at 1.12-8.96 kg a.i./ha, applied as a surface spray or in furrow irrigation water, slowed the early progression of disease symptoms but failed to provide season-long nematode control.
PMCID: PMC2618503  PMID: 19294142
aldicarb; carbofuran; ethoprop; fensulfothion; formalin; oxamyl; phenamiphos; hot-water dip; seedborne infection; stem nematode; Allium sativum
20.  The Development and Influence of Meloidogyne incognita and M. javanica on Wheat 
Journal of Nematology  1981;13(3):345-352.
The effects of soil temperature and initial inoculum density (Pi) of Meloidogyne incognito and M. javanica on growth of wheat (Triticum aestivum cv. Anza) and nematode reproduction were studied in controlled temperature baths in the glasshouse. Nematode reproduction was directly proportional to temperature between 14 and 30 C for M. incognita and between 18 and 26 C for M. javanica. Reproduction rates (Pf/Pi, where Pf = final number of eggs) for Pi's of 3,000, 9,000, and 30,000 eggs/plant were greatest at each temperature when Pi = 3,000. Maximum M. incognita reproduction rate (Pf/Pi = 51.12) was at 30 C. At 26 C, M. javanica reproduction (Pf/Pi = 14.82, 9.02, and 4.23 for Pi = 3,000, 9,000, and 30,000, respectively) was about half that of M. incognita when Pi = 3,000 or 9,000 but similar when Pi = 30,000. Reproduction of both species was depressed between 14 and 18 C. Shoot and root growth and head numbers were inversely related to soil temperature between 14 and 30 C but were not affected by the Pi of M. incognita when 7 d old seedlings were inoculated. When newly germinated seedlings were inoculated with M. incognita or M. javanica, the Pi did not affect shoot and root fresh weights, shoot/root ratio, and tillering, but it did reduce root dry weight (M. javanica at 26 C) and increase shoot dry weight (M. incognita at 18-22 C). The optimum temperature range is lower for wheat growth than for nematode reproduction. Wheat cv. Anza is a good host for M. incognita and M. javanica, but it is tolerant to both species.
PMCID: PMC2618108  PMID: 19300774
temperature; root-knot nematodes; tolerance; population dynamics
21.  Effects of Soil Temperature and Planting Date of Wheat on Meloidogyne incognita Reproduction, Soil Populations, and Grain Yield 
Journal of Nematology  1981;13(3):338-345.
Wheat cultivars Anza and Produra grown in winter in California were planted in Meloidogyne incognita infested and noninfested sandy loam plots in October (soil temperature 21 C) and November (soil temperature 16 C) of 1979. Meloidogyne incognita penetrated roots of mid-October planted Ataza (427 juveniles/g root), developed into adult females by January, and produced 75 eggs/g root by harvest in April. Penetration and development did not occur in late plantings. Anza seedlings grown in infested soil in pots buried in field soil in early spring were not invaded until soil temperature exceeded 18 C. Meloidogyne incognita juveniles can migrate through soil and penetrate roots at temperatures above 18 C (activity threshold), however development can occur at lower temperatures. Grain yields were not significantly different between nematode infested (3,390 kg/ha) and noninfested (2,988 kg/ha) plots. Winter decline of eggs and juveniles in two late plantings anti in fallow soil were 69, 72, and 77%, respectively, but egg and juvenile decline was only 40% in the early Anza plots that supported nematode reproduction in the spring. Delay of planting date until soil temperature is below 18 C is suggested to maximize the use of wheat in rotation as a nematode pest management cultural tactic for suppressing root-knot nematodes.
PMCID: PMC2618102  PMID: 19300773
root-knot nematodes; population dynamics; nematode pest management; Triticum aestivum
22.  Influence of Nonhosts, Crucifers, and Fungal Parasites on Field Populations of Heterodera schachtii 
Journal of Nematology  1981;13(2):164-171.
Heterodera schaehtii egg number decline under nonhosts was surveyed for 3-4 years at soil depths of 0-30 cm and 30-60 cm in three fields in the Imperial Valley, California. In the two fields continously cropped to alfalfa, annual decline rates were 49 and 63%, respectively, and did not differ (P = 0.05) between depths. In the third field, cropped to annual nonhosts and fallowed, decline rates of 56 and 80% at 0-30-cm and 30-60-cm depths, respectively, were significantly different (P = 0.05). Egg hatch is the major cause of decline. Soil moisture in relation to type of cropping sequence apparently influenced egg hatch and activity of fungal parasites. An interaction matrix is used to assess the importance of biological, environmental, and management factors affecting decline of H. schachtii egg numbers. The required rotation length to non-hosts for various egg densities can be predicted. In coastal California, inclusion of a winter crucifer crop in the rotation increased H. schachtii egg density up to threefold.
PMCID: PMC2618062  PMID: 19300739
sugar-beet cyst nematode; Acremonium strictum; Fusarium oxysporum; crop rotation; population dynamics; biological control

Results 1-22 (22)