Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Improving Metabolic Stability By Glycosylation: Bifunctional Peptide Derivatives That Are Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists 
Journal of medicinal chemistry  2009;52(16):5164-5175.
In order to obtain a metabolically more stable analgesic peptide derivative, O-β-glycosylated serine (Ser(Glc)) was introduced into TY027 (Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-3’,5’-Bzl(CF3)2) which was a previously reported bifunctional compound with delta/mu opioid agonist and neurokinin-1 receptor antagonist activities, and with a half life of 4.8 h in rat plasma. Incorporation of Ser(Glc) into various positions of TY027 gave analogues with variable bioactivities. Analogue 6 (Tyr-D-Ala-Gly-Phe-Nle-Pro-Leu-Ser(Glc)-Trp-NH-3’,5’-Bzl(CF3)2) was found to have effective bifunctional activities with a well-defined conformation with two β-turns based on the NMR conformational analysis in the presence of DPC micelles. In addition, 6 showed significant improvement in its metabolic stability (70 ± 9 % of 6 was intact after 24 h incubation in rat plasma). This improved metabolic stability, along with its effective and delta selective bifunctional activities, suggests that 6 could be an interesting research tool and possibly a promising candidate as a novel analgesic drug.
PMCID: PMC3521585  PMID: 20560643
bifunctional peptide derivatives; glycopeptides; analgesics; opioid induced tolerance; opioid receptor agonist; neurokinin-1 receptor antagonist; conformation-activity relationships; NMR structure; DPC micelles
2.  Development of potent μ and δ opioid agonists with high lipophilicity 
Journal of medicinal chemistry  2010;54(1):382-386.
An SAR study on the Dmt-substituted enkephalin-like tetrapeptide with a N-phenyl-N-piperidin-4-yl propionamide moiety at C-terminal was performed, and has resulted in highly potent ligands at μ and δ opioid receptors. In general, ligands with the substitution of D-Nle2 and halogenation of the aromatic ring of Phe4 showed highly increased opioid activities. Ligand 6 with good biological activities in vitro demonstrated potent in vivo antihyperalgesic and antiallodynic effects in the tail-flick assay.
PMCID: PMC3136578  PMID: 21128594
3.  Biological and Conformational Evaluation of Bifunctional Compounds for Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists Possessing Two Penicillamines 
Journal of medicinal chemistry  2010;53(15):5491-5501.
Neuropathic pain states and tolerance to opioids can result from system changes in the CNS, such as up-regulation of the NK1 receptor and substance P, which have anti-opioid effects in ascending or descending pain-signaling pathways. Bifunctional compounds, possessing both the NK1 antagonist pharmacophore and the opioid agonist pharmacophore with delta-selectivity, could counteract these system changes to have significant analgesic efficacy without undesirable side effects. As a result of the introduction of cyclic and topological constraints with penicillamines, 2 (Tyr-cyclo[D-Pen-Gly-Phe-Pen]-Pro-Leu-Trp-NH-[3′,5′-(CF3)2-Bzl]) was found as the best bifunctional compound with effective NK1 antagonist and potent opioid agonist activities, and 1400-fold delta-selectivity over the mu-receptor. The NMR structural analysis of 2 revealed that the relative positioning of the two connected pharmacophores as well as its cyclic and topological constraints might be responsible for its excellent bifunctional activities as well as its significant delta-opioid selectivity. Together with the observed high metabolic stability, 2 could be considered as a valuable research tool and possibly a promising candidate for a novel analgesic drug.
PMCID: PMC2943425  PMID: 20617791
bifunctional compound; opioid receptor agonists; neutokinin-1 receptor antagonists; NMR structure; membrane-compound interaction
4.  The Importance of Micelle-Bound States for the Bioactivities of Bifunctional Peptide Derivatives for δ/μ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists 
Journal of medicinal chemistry  2008;51(20):6334-6347.
In order to provide new insight into the determining factors of membrane-bound peptide conformation which might play an important role in peptide-receptor docking and further biological behaviors, the dodecylphosphocholine (DPC) micelle-bound conformations of bifunctional peptide derivatives of δ-preferring opioid agonists and NK1 antagonists (1: Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-O-3,5-Bzl(CF3)2; 2: Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-3,5-Bzl(CF3)2; 3: Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-Bzl) were determined based on 2D NMR studies. Although the differences in the primary sequence were limited to the C-terminus, the obtained NMR conformations were unexpectedly different for each compound. Moreover, their biological activities showed different trends in direct relation to the compound-specific conformations in DPC micelles. The important result is that not only were the NK1 antagonist activities different (the pharmacophore located at the C-terminus), but the opioid agonist activities (this pharmacophore was at the structurally preserved N-terminus) also were shifted, suggesting that a general conformational change in the bioactive state was induced due to relatively small and limited structural modifications.
PMCID: PMC2675940  PMID: 18821747
bifunctional peptides; analgesics; opioid induced tolerance; opioid receptor agonists; neurokinin-1 receptor antagonists; structure-activity relationships; NMR structure; DPC micelles; conformation; fluorine
5.  A Structure–Activity Relationship Study and Combinatorial Synthetic Approach of C-Terminal Modified Bifunctional Peptides That Are δ/μ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists 
Journal of medicinal chemistry  2008;51(5):1369-1376.
A series of bifunctional peptides with opioid agonist and substance P antagonist bioactivities were designed with the concept of overlapping pharmacophores. In this concept, the bifunctional peptides were expected to interact with each receptor separately in the spinal dorsal horn where both the opioid receptors and the NK1 receptors were found to be expressed, to show an enhanced analgesic effect, no opioid-induced tolerance, and to provide better compliance than coadministration of two drugs. Compounds were synthesized using a two-step combinatorial method for C-terminal modification. In the method, the protected C-terminal-free carboxyl peptide, Boc-Tyr(tBu)-d-Ala-Gly Phe-Pro-Leu-Trp(Boc)-OH, was synthesized as a shared intermediate using Fmoc solid phase chemistry on a 2-chlorotrityl resin. This intermediate was esterified or amidated in solution phase. The structure–activity relationships (SAR) showed that the C-terminus acted as not only a critical pharmacophore for the substance P antagonist activities, but as an address region for the opioid agonist pharmacophore that is structurally distant from the C-terminal. Among the peptides, H-Tyr-d-Ala-Gly-Phe-Pro-Leu-Trp-NH-Bzl (3) demonstrated high binding affinities at both δ and μ receptors (Ki = 10 and 0.65 nM, respectively) with efficient agonist functional activity in the mouse isolated vas deferens (MVD) and guinea pig isolated ileum (GPI) assays (IC50 = 50 and 13 nM, respectively). Compound 3 also showed a good antagonist activity in the GPI assay with substance P stimulation (Ke = 26 nM) and good affinity for the hNK1 receptor (Ki = 14 nM). Consequently, compound 3 is expected to be a promising and novel type of analgesic with bifunctional activities.
PMCID: PMC2737825  PMID: 18266313
6.  Development of novel enkephalin analogues which have enhanced opioid activities at both μ and δ opioid receptors 
Journal of medicinal chemistry  2007;50(22):5528-5532.
Enkephalin analogues with an 4-anilidopiperidine scaffold have been designed and synthesized to achieve therapeutic benefit for the treatment of pain due to mixed μ and δ opioid agonist activities. Ligand 16, in which a Dmt-substituted enkephalin-like structure was linked to the N-phenyl-N-piperidin-4-yl propionamide moiety showed very high binding affinities (0.4 nM) at μ and δ receptors with an increased hydrophobicity (aLogP = 2.96). This novel lead compound was found to have very potent agonist activities in MVD (1.8 nM) and GPI (8.5 nM) assays.
PMCID: PMC2678914  PMID: 17927164
7.  Design, Synthesis, and Biological Evaluation of Novel Bifunctional C-Terminal-Modified Peptides for δ/μ Opioid Receptor Agonists and Neurokinin-1 Receptor Antagonists 
Journal of medicinal chemistry  2007;50(12):2779-2786.
A series of bifunctional peptides that act as agonists for δ and μ opioid receptors with δ selectivity and as antagonist for neurokinin-1 (NK1) receptors were designed and synthesized for potential application as analgesics in various pain states. The peptides were characterized using radioligand binding assays and functional assays using cell membrane and animal tissue. Optimization was performed on the fifth residue which serves as an address moiety for both receptor recognitions. It had critical effects on both activities at δ/μ opioid receptors and NK1 receptors. Among the synthesized peptides, H-Tyr-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-O-3,5-Bzl(CF3)2 (5) and H-Tyr-D-Ala-Gly-Phe-Nle-Pro-Leu-Trp-O-3,5-Bzl(CF3)2 (7) had excellent agonist activity for both δ opioid and μ opioid receptors and excellent antagonist activity for NK1 receptors. These results indicate that the rational design of multifunctional ligands with opioid agonist and neurokinin-1 antagonist activities can be accomplished and may provide a new tool for treatment of chronic and several pain states.
PMCID: PMC2365895  PMID: 17516639
8.  Partial Retro–Inverso, Retro, and Inverso Modifications of Hydrazide Linked Bifunctional Peptides for Opioid and Cholecystokinin (CCK) Receptors 
Journal of medicinal chemistry  2007;50(1):165-168.
Partially modified retro–inverso, retro, and inverso isomers of hydrazide linked bifunctional peptides were designed, synthesized, and evaluated for bioactivities at δ/μ opioid receptors and CCK-1/CCK-2 receptors. All modifications of the CCK pharmacophore moiety affected bioactivities for the CCK-1 and CCK-2 receptors (up to 180-fold increase in the binding affinity with higher selectivity) and for the δ and μ opioid receptors. The results indicate that the opioid and CCK pharmacophores in one molecule interact with each other to induce topographical changes for both pharmacophores.
PMCID: PMC2365893  PMID: 17201419
9.  Design and Synthesis of Novel Hydrazide-Linked Bifunctional Peptides as δ/μ Opioid Receptor Agonists and CCK-1/CCK-2 Receptor Antagonists 
Journal of medicinal chemistry  2006;49(5):1773-1780.
A series of hydrazide-linked bifunctional peptides designed to act as agonists for δ /μ opioid receptors and antagonists for CCK-1/CCK-2 receptors was prepared and tested for binding to both opioid and CCK receptors and in functional assays. SAR studies in the CCK region examined the structural requirements for the side chain groups at positions 1′, 2′, and 4′ and for the N-terminal protecting group, which are related to interactions not only with CCK, but also with opioid receptors. Most peptide ligands that showed high binding affinities (0.1–10 nM) for both δ and μ opioid receptors generally showed lower binding affinities (micromolar range) at CCK-1 and CCK-2 receptors, but were potent CCK receptor antagonists in the GPI/LMMP assay (up to Ke = 6.5 nM). The results indicate that it is reasonable to design chimeric bifunctional peptide ligands for different G-protein coupled receptors in a single molecule.
PMCID: PMC1614704  PMID: 16509592
10.  Structure–Activity Relationships of Bifunctional Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors 
Journal of medicinal chemistry  2006;49(10):2868-2875.
Cholecystokinin (CCK) has been identified as a pronociceptive endogenous peptide which also possesses antiopioid actions. CCK may be upregulated in conditions of chronic pain or during sustained morphine administration resulting in attenuation of opioid-mediated pain relief. These complex interactions between opioids and endogenous CCK receptor systems have suggested the need for a new paradigm in drug design for some states of chronic pain. In these circumstances the rational design of potential drugs for the treatment of these conditions must be based on one ligand for multiple targets. We have designed a single peptide which can interact with δ and μ opioid receptors as agonists and with CCK receptors as antagonists. The ligands were designed based on a model of overlapping pharmacophores of opioid and CCK peptide ligands, which incorporates opioid pharmacophores at the N-terminal and CCK tetrapeptide pharmacophores at the C-terminal of the designed ligands. We measured binding and activities of our bifunctional peptides at opioid and CCK receptors. Compound 11 (Tyr-d-Ala-Gly-d-Trp-NMeNle-Asp-Phe-NH2) demonstrated opioid agonist properties at δ and μ receptors (IC50 = 63 ± 27 nM and 150 ± 65 nM, respectively in MVD and GPI tissue assays) and high binding affinity at CCK-1 and CCK-2 receptors (Ki = 320 and 1.5 nM, respectively). Compound 9 (Tyr-d-Nle-Gly-Trp-Nle-Asp-Phe-NH2) displayed potent agonist activity at δ and μ receptors (IC50 = 23 ±10 nM and 210 ± 52 nM, respectively in MVD and GPI tissue assays), with a balanced binding affinity for CCK-1 and CCK-2 receptors (Ki = 9.6 and 15 nM, respectively). These results provide evidence supporting the concept that opioid and CCK receptors have overlapping pharmacophores required for binding affinity and biological activity and that designing overlapping pharmacophores of two peptides into a single peptide is a valid drug design approach.
PMCID: PMC1484468  PMID: 16686530

Results 1-10 (10)