PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Chemistry, Pharmacology, and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2- Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile. Part II 
Journal of medicinal chemistry  2013;56(13):10.1021/jm400510u.
A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4β2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds 24, 26, and 30 demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline.
doi:10.1021/jm400510u
PMCID: PMC3843973  PMID: 23734673
2.  Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II 
Journal of medicinal chemistry  2012;55(22):9998-10009.
In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics.
doi:10.1021/jm301177j
PMCID: PMC3532055  PMID: 23092294
3.  Insights into the Structural Determinants Required for High Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors; An Integrated Approach to Behaviorally Active Nicotinic Ligands 
Journal of medicinal chemistry  2012;55(18):8028-8037.
Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a co-crystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing, selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine our previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. In order to validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogs of compound 5. The most promising compound 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral endpoints in the rodent studies.
doi:10.1021/jm3008739
PMCID: PMC3464052  PMID: 22928944
4.  Identification of Novel α4β2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity 
Journal of Medicinal Chemistry  2012;55(2):812-823.
There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening towards other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.
doi:10.1021/jm201301h
PMCID: PMC3272775  PMID: 22148173
5.  Chemistry and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile 
Journal of Medicinal Chemistry  2012;55(2):717-724.
Despite their discovery in the early 20th century and intensive study over the last twenty years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity, while acting as partial agonists at α4β2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening towards other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression.
doi:10.1021/jm201157c
PMCID: PMC3292870  PMID: 22171543
6.  Discovery of Isoxazole Analogs of Sazetidine-A as Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists for the Treatment of Depression 
Journal of medicinal chemistry  2011;54(20):7280-7288.
Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenalin are not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogs that interact with α4β2-nAChR as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4β2 subtype of nAChR over α3β4-nAChRs are partial agonists at the α4β2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary ADMET studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450 related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline.
doi:10.1021/jm200855b
PMCID: PMC3197876  PMID: 21905669
7.  Nicotinic Acetylcholine Receptor Efficacy and Pharmacological Properties of 3-(Substituted phenyl)-2β-substituted Tropanes 
Journal of medicinal chemistry  2010;53(23):8345-8353.
There is a need for different and better aids to tobacco product use cessation. Useful smoking cessation aids, bupropion (2) and varenicline (3), share some chemical features with 3-phenyltropanes (4), which have promise in cocaine dependence therapy. Here we report studies to generate and characterize pharmacodynamic features of 3-phenyltropane analogues. These studies extend our work on the multiple molecular target model for aids to smoking cessation. We identified several new 3-phenyltropane analogues that are superior to 2 in inhibition of dopamine, norepinephrine, and sometimes serotonin reuptake. All of these ligands also act as inhibitors of nicotinic acetylcholine receptor (nAChR) function with a selectivity profile that favors, like 2, inhibition of α3β4*-nAChR. Many of these ligands also block acute effects of nicotine-induced antinociception, locomotor activity, and hypothermia. Importantly, all except one of the analogues tested have better potencies in inhibition of nicotine conditioned place preference than 2. We have identified new compounds that have utility as research tools and possible promise for treatment of nicotine dependence.
doi:10.1021/jm100994w
PMCID: PMC3130825  PMID: 21058665
Nicotine; 3-phenyltropanes; structure activity relationship; dopamine uptake norepinephrine uptake; nAChR antagonism; antinociception; locomotor activity; hypothermia multiple target; conditioned place preference
8.  Synthesis of 2-(Substituted phenyl)-3,5,5-trimethylmorpholine Analogues and Their Effects on Monoamine Uptake, Nicotinic Acetylcholine Receptor Function, and Behavioral Effects of Nicotine 
Journal of medicinal chemistry  2011;54(5):1441-1448.
Toward development of smoking cessation aids superior to bupropion (2), we describe synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues 5a–5h and their effects on inhibition of dopamine, norepinephrine, and serotonin uptake, nicotinic acetylcholine receptor (nAChR) function, acute actions of nicotine, and nicotine-conditioned place preference (CPP). Several analogues encompassing aryl substitutions, N-alkylation, and alkyl extensions of the morpholine ring 3-methyl group provided analogues more potent in vitro than (S,S)-hydroxybupropion (4a) as inhibitors of dopamine or norepinephrine uptake and antagonists of nAChR function. All of the new (S,S)-5 analogues had better potency than (S,S)-4a as blockers of acute nicotine analgesia in the tail-flick test. Two analogues with highest potency at α3β4*-nAChR and among the most potent transporter inhibitors have better potency than (S,S)-4a in blocking nicotine-CPP. Collectively, these findings illuminate mechanisms of action of 2 analogues and identify deshydroxybupropion analogues 5a–5h as possibly superior candidates as aids to smoking cessation.
doi:10.1021/jm1014555
PMCID: PMC3048909  PMID: 21319801
Nicotine; bupropion; hydroxybupropion; structure activity relationship; dopamine uptake; norepinephrine uptake; nAChR antagonism; antinociception; locomotor activity; hypothermia
9.  Chemistry and Pharmacological Characterization of Novel Nitrogen Analogs of AMOP-H-OH (Sazetidine-A; 6-[5-(Azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-Nicotinic Acetylcholine Receptor-Selective Partial Agonists 
Journal of medicinal chemistry  2010;53(19):6973-6985.
In order to advance therapeutic applications of nicotinic ligands, continuing research efforts are being directed toward the identification and characterization of novel nicotinic acetylcholine receptor (nAChR) ligands that are both potent and subtype selective. Herein we report the synthesis and pharmacological evaluation of members of a new series of 3-alkoxy-5-aminopyridine derivatives that display good selectivity for the α4β2-nAChR subtype based on ligand binding and functional evaluations. The most potent ligand in this series, compound 64, showed high radioligand binding affinity and selectivity for rat α4β2-nAChR with a Ki value of 1.2 nM and 4700-fold selectivity for α4β2-over α3β4-nAChR, and ~100-fold selectivity for functional, high-sensitivity, human α4β2-nAChR over α3β4*-nAChR. In the mouse forced swim test, compound 64 exhibited antidepressant-like effects. Structure-activity relationship (SAR) analyses suggest that the introduction of additional substituents to the amino group present on the pyridine ring of the N-demethylated analogue of compound 17 can provide potent α4β2-nAChR-selective ligands for possible use in treatment of neurological and psychiatric disorders including depression.
doi:10.1021/jm100765u
PMCID: PMC2957884  PMID: 20822184
10.  Synthesis and Characterization of In Vitro and In Vivo Profiles of Hydroxybupropion Analogues: Aids to Smoking Cessation 
Journal of medicinal chemistry  2010;53(12):4731-4748.
To create potentially superior aids to smoking cessation and/or antidepressants and to elucidate bupropion’s possible mechanisms of action(s), several analogues based on its active hydroxymetabolite (2S,3S)-4a were synthesized and tested for their abilities to inhibit monoamine uptake and nAChR subtype activities in vitro and acute effects of nicotine in vivo. The 3′,4′-dichlorophenyl [(±)-4n], naphthyl (4r), and 3-chlorophenyl or 3-propyl analogues 4s and 4t, respectively, had higher inhibitory potency and/or absolute selectivity than (2S,3S)-4a for inhibition of DA, NE, or 5HT uptake. The 3′-fluorophenyl, 3′-bromophenyl, and 4-biphenyl analogues 4c, 4d, and 4l, respectively, had higher potency for antagonism of α4β2-nAChR than (2S,3S)-4a. Several analogues also had higher potency than (2S,3S)-4a as antagonists of nicotine-mediated antinociception in the tail-flick assay. The results suggest that compounds acting via some combination of DA, NE, or 5HT inhibition and/or antagonism of α4β2-nAChR can potentially be new pharmacotherapeutics for treatment of nicotine dependence.
doi:10.1021/jm1003232
PMCID: PMC2895766  PMID: 20509659
Nicotine; bupropion; hydroxybupropion; structure activity relationship; dopamine uptake; norepinephrine uptake; nAChR antagonism; antinociception; locomotor activity; hypothermia
11.  Synthesis and Biological Evaluation of Bupropion Analogues as Potential Pharmacotherapies for Smoking Cessation 
Journal of medicinal chemistry  2010;53(5):2204-2214.
Bupropion (2a) analogues were synthesized and tested for their ability to inhibit monoamine uptake and to antagonize the effects of human α3β4*, α4β2, α4β4, and α1* nAChRs. The analogues were evaluated for their ability to block nicotine-induced effects in four tests in mice. Nine analogues showed increased monoamine uptake inhibition. Similar to 2a all but one analogue show inhibition of nAChR function selective for human α3β4*-nAChR. Nine analogues have higher affinity at α3β4*-nAChRs than 2a. Four analogues also had higher affinity for α4β2 nAChR. Analogues 2r, 2m, and 2n with AD50 values of 0.014, 0.015, and 0.028 mg/kg were 87, 81, and 43 times more potent than 2a in blocking nicotine-induced antinociception in the tail-flick test. Analogue 2x with IC50 values of 31 and 180 nM for DA and NE, respectively, and IC50 = 0.62 and 9.8 μm for antagonism of α3β4 and α4β2 nAChRs had the best overall in vitro profile relative to 2a.
doi:10.1021/jm9017465
PMCID: PMC2841507  PMID: 20158204
Nicotine; bupropion; structure activity relationship; dopamine uptake; norepinephrine uptake; nAChR antagonism; antinociception; locomotor activity; hypothermia; multiple target

Results 1-11 (11)