PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence 
Journal of medicinal chemistry  2012;55(22):9434-9445.
Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans.
doi:10.1021/jm3005306
PMCID: PMC3508153  PMID: 23009245
Metabotropic glutamate receptors; agonist; positive allosteric modulators; BINA; nicotine self-administration; rat model; addiction
2.  A novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells 
Journal of Medicinal Chemistry  2012;55(5):2427-2436.
The efficacy of anti-cancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is over-expressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anti-cancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We found that the peptide-drug conjugate is dramatically more effective than paclitaxel alone at inhibiting tumor growth in a prostate cancer xenograft model, delivering significantly higher levels of drug to the tumor site. We believe these studies open the way to the development of a new class of therapeutic compounds that exploit the EphA2 receptor for drug delivery to cancer cells.
doi:10.1021/jm201743s
PMCID: PMC3299084  PMID: 22329578
3.  Potent, Selective, and Orally Available Benzoisothiazolone Phosphomannose Isomerase Inhibitors as Probes for Congenital Disorder of Glycosylation Ia 
Journal of medicinal chemistry  2011;54(10):3661-3668.
We report the discovery and validation of a series of benzoisothiazolones as potent inhibitors of phosphomannose isomerase (PMI), an enzyme which converts mannose-6-phosphate (Man-6-P) into fructose-6-phosphate (Fru-6-P), and more importantly, competes with phosphomannomutase 2 (PMM2) for Man-6-P, diverting this substrate from critical protein glycosylation events. In Congenital Disorder of Glycosylation type Ia, PMM2 activity is compromised, thus PMI inhibition is a potential strategy for the development of therapeutics. High-throughput screening (HTS) and subsequent chemical optimization led to the identification of a novel class of benzoisothiazolones as potent PMI inhibitors having little or no PMM2 inhibition. Two complimentary synthetic routes were developed enabling the critical structural requirements for activity to be determined, and the compounds were subsequently profiled in biochemical and cellular assays to assess efficacy. The most promising compounds were also profiled for bioavailability parameters including metabolic stability, plasma stability, and permeability. The pharmacokinetic profile of a representative of this series was also assessed, demonstrating the potential of this series for in vivo efficacy when dosed orally in disease models.
doi:10.1021/jm101401a
PMCID: PMC3437750  PMID: 21539312
4.  Design, synthesis, and structure-activity relationships of 3-ethynyl-1H-indazoles as inhibitors of Phosphatidylinositol 3-kinase signaling pathway 
Journal of medicinal chemistry  2010;53(23):8368-8375.
A new series of 3-ethynyl-1H–indazoles has been synthesized and evaluated in both biochemical and cell-based assays as potential kinase inhibitors. Interestingly, a selected group of compounds identified from this series exhibited low micromolar inhibition against critical components of the PI3K pathway, targeting PI3K, PDK1 and mTOR kinases. Combination of computational modeling and structure-activity relationships studies reveal a possible novel mode for PI3K inhibition, resulting in a PI3Kα isoform specific compound. Hence, by targeting the most oncogenic mutant isoform of PI3K, the compound displays anti-proliferative activity both in monolayer human cancer cell cultures and in three-dimensional tumor models. Because of its favorable physicochemical, in vitro ADME and drug-like properties, we propose that this novel ATP mimetic scaffold could result useful in deriving novel selecting and multi-kinase inhibitors for clinical use.
doi:10.1021/jm100825h
PMCID: PMC3131451  PMID: 21062009
5.  Discovery of a Novel Series of Inhibitors of Lymphoid Tyrosine Phosphatase with Activity in Human T Cells† 
Journal of medicinal chemistry  2011;54(6):1640-1654.
The lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, is a critical regulator of signaling in T cells and recently emerged as a candidate target for therapy of autoimmune diseases. Here, by library screening, we identified a series of noncompetitive inhibitors of LYP that showed activity in primary T cells. Kinetic analysis confirmed that binding of the compounds to the phosphatase is nonmutually exclusive with respect to a known bidentate competitive inhibitor. The mechanism of action of the lead inhibitor compound 4e was studied by a combination of hydrogen/deuterium-exchange mass spectrometry and molecular modeling. The results suggest that the inhibitor interacts critically with a hydrophobic patch located outside the active site of the phosphatase. Targeting of secondary allosteric sites is viewed as a promising yet unexplored approach to develop pharmacological inhibitors of protein tyrosine phosphatases. Our novel scaffold could be a starting point to attempt development of “nonactive site” anti-LYP pharmacological agents.
doi:10.1021/jm101202j
PMCID: PMC3086468  PMID: 21341673
6.  Design and Synthesis of an Orally Active Metabotropic Glutamate Receptor Subtype-2 (mGluR2) Positive Allosteric Modulator (PAM) that Decreases Cocaine Self-administration in Rats 
Journal of medicinal chemistry  2010;54(1):342-353.
The modification of 3′-((2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yloxy)methyl)biphenyl-4-carboxylic acid (BINA, 1) by incorporating heteroatoms into the structure and replacing the cyclopentyl moiety led to the development of new mGluR2 positive allosteric modulators (PAMs) with optimized potency and superior drug-like properties. These analogues are more potent than 1 in vitro, and are highly selective for mGluR2 vs. other mGluR subtypes. They have significantly improved pharmacokinetic (PK) properties, with excellent oral bioavailability and brain penetration. The benzisothiazol-3-one derivative 14 decreased cocaine self-administration in rats, providing proof-of-concept for the use of mGluR2 PAMs for the treatment of cocaine dependence.
doi:10.1021/jm1012165
PMCID: PMC3071440  PMID: 21155570
Metabotropic glutamate receptors; agonist; positive allosteric modulators; BINA; cocaine self-administration
7.  Synthesis and Biological Evaluation of Apogossypolone Derivatives as Pan-active Inhibitors of Anti-apoptotic B-Cell Lymphoma/Leukemia-2 (Bcl-2) Family Proteins 
Journal of medicinal chemistry  2010;53(22):8000-8011.
Overexpression of anti-apoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these anti-apoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5, 5′ substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of anti-apoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range. Compound 6f inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2 and Mcl-1 with IC50 values of 3.10, 3.12 and 2.05 μM, respectively. In a cellular assay, 6f potently inhibits cell growth in several human cancer cell lines in a dose-dependent manner. Compound 6f further displays in vivo efficacy in transgenic mice and demonstrated superior single-agent antitumor efficacy in a PPC-1 mouse xenograft model. Together with its negligible toxicity, compound 6f represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
doi:10.1021/jm100746q
PMCID: PMC3059195  PMID: 21033669
8.  BI-97C1, an Optically Pure Apogossypol Derivative as Pan-Active Inhibitor of Anti-apoptotic B-cell lymphoma/leukemia-2 (Bcl-2) Family Proteins 
Journal of medicinal chemistry  2010;53(10):4166-4176.
In our continued attempts to identify novel and effective pan-Bcl-2 antagonists, we have recently reported a series of compound 2 (Apogossypol) derivatives, resulting in the chiral compound 4 (8r). We report here on synthesis and evaluation on its optically pure individual isomers. Compound 11 (BI-97C1), the most potent diastereoisomer of compound 4, inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl-1 with IC50 values of 0.31, 0.32, 0.20 and 0.62 μM, respectively. The compound also potently inhibits cell growth of human prostate cancer, lung cancer and lymphoma cell lines with EC50 values of 0.13, 0.56 and 0.049 μM, respectively and shows little cytotoxicity against bax−/−bak−/− cells. Compound 11 displays in vivo efficacy in transgenic mice models and also demonstrated superior single-agent antitumor efficacy in a prostate cancer mouse xenograft model. Therefore, compound 11 represents a potential drug lead for the development of novel apoptosis-based therapies against cancer.
doi:10.1021/jm1001265
PMCID: PMC2880850  PMID: 20443627
9.  Discovery and Validation of a Series of Aryl Sulfonamides as Selective Inhibitors of Tissue-Nonspecific Alkaline Phosphatase (TNAP) 
Journal of medicinal chemistry  2009;52(21):6919-6925.
We report the characterization and optimization of drug-like small molecule inhibitors of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme critical for the regulation of extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) of a small molecule library led to the identification of arylsulfonamides as potent and selective inhibitors of TNAP. Critical structural requirements for activity were determined, and the compounds were subsequently profiled for in vitro activity and bioavailability parameters including metabolic stability and permeability. The plasma levels following subcutaneous administration of a member of the lead series in rat was determined, demonstrating the potential of these TNAP inhibitors as systemically active therapeutic agents to target various diseases involving soft tissue calcification. A representative member of the series was also characterized in mechanistic and kinetic studies.
doi:10.1021/jm900383s
PMCID: PMC2783186  PMID: 19821572
10.  Apogossypol Derivatives as Pan-active Inhibitors of Anti-apoptotic B-cell lymphoma/leukemia-2 (Bcl-2) Family Proteins 
Journal of medicinal chemistry  2009;52(14):4511-4523.
Guided by nuclear magnetic resonance (NMR) binding assays and computational docking studies, a series of 5, 5′ substituted Apogossypol derivatives was synthesized that resulted in potent pan-active inhibitors of anti-apoptotic Bcl-2 family proteins. Compound 8r inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl-1 with IC50 values of 0.76, 0.32, 0.28 and 0.73 μM, respectively. The compound also potently inhibits cell growth of human lung cancer and BP3 human B-cell lymphoma cell lines with EC50 values of 0.33 and 0.66 μM, respectively. Compound 8r shows little cytotoxicity against bax−/−bak−/− cells, indicating that it kills cancers cells via the intented mechanism. The compound also displays in vivo efficacy in transgenic mice in which Bcl-2 is overexpressed in splenic B-cells. Together with its improved chemical, plasma and microsomal stability relative to compound 2 (Apogossypol), compound 8r represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
doi:10.1021/jm900472s
PMCID: PMC2747480  PMID: 19555126
11.  Design, Synthesis, and Structure-Activity Relationship of Substrate Competitive, Selective, and in Vivo Active Triazole and Thiadiazole inhibitors of the c-Jun N-Terminal Kinase 
Journal of medicinal chemistry  2009;52(7):1943-1952.
We report comprehensive structure activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. The compounds are substrate competitive inhibitors that bind to the docking site of the kinase. The reported medicinal chemistry and structure-based optimizations studies resulted in the discovery of selective and potent thiadiazole JNK inhibitors that displays promising in vivo activity in mouse models of insulin insensitivity.
doi:10.1021/jm801503n
PMCID: PMC2667321  PMID: 19271755
12.  Fragment-Based Design of Small Molecule X-Linked Inhibitor of Apoptosis Protein Inhibitors 
Journal of medicinal chemistry  2008;51(22):7111-7118.
We report on a general structure- and NMR- based approach to derive drug-like small molecule inhibitors of protein-protein interactions in a rapid and efficient manner. We demonstrate the utility of the approach by deriving novel and effective SMAC mimetics targeting the anti-apoptotic protein X-Linked Inhibitor of Apoptosis Protein (XIAP). The XIAP baculovirus IAP repeat 3 (Bir3) domain binds directly to the N-terminal of Caspase-9 and thus inhibiting programmed cell death. It has been shown that in the cell this interaction can be displaced by the protein second mitochondrial activator of caspases (SMAC) and that its N-terminal tetrapeptide region (NH2-AVPI, Ala-Val-Pro-Ile) is responsible for this activity. However, due to their limited cell-permeability, synthetic SMAC peptides are inefficient when tested in cultured cells, limiting their use as potential chemical tools or drug candidates against cancer cells. Hence, as an application, we report on the derivation of novel, selective, drug-like, cell permeable SMAC mimics with cellular activity.
doi:10.1021/jm8006992
PMCID: PMC2692895  PMID: 18956862

Results 1-12 (12)