PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Synthesis and Biological Evaluation of New Carbohydrate-Substituted Indenoisoquinoline Topoisomerase I Inhibitors and Improved Syntheses of the Experimental Anticancer Agents Indotecan (LMP400) and Indimitecan (LMP776) 
Journal of Medicinal Chemistry  2014;57(4):1495-1512.
Carbohydrate moieties were strategically transported from the indolocarbazole topoisomerase I (Top1) inhibitor class to the indenoisoquinoline system in search of structurally novel and potent Top1 inhibitors. The syntheses and biological evaluation of 20 new indenoisoquinolines glycosylated with linear and cyclic sugar moieties are reported. Aromatic ring substitution with 2,3-dimethoxy-8,9-methylenedioxy or 3-nitro groups exerted strong effects on antiproliferative and Top1 inhibitory activities. While the length of the carbohydrate side chain clearly correlated with antiproliferative activity, the relationship between stereochemistry and biological activity was less clearly defined. Twelve of the new indenoisoquinolines exhibit Top1 inhibitory activity equal to or better than that of camptothecin. An advanced synthetic intermediate from this study was also used to efficiently prepare indotecan (LMP400) and indimitecan (LMP776), two anticancer agents currently under investigation in a Phase I clinical trial at the National Institutes of Health.
doi:10.1021/jm401814y
PMCID: PMC3983348  PMID: 24517248
2.  Optimization of the Lactam Side Chain of 7-Azaindenoisoquinoline Topoisomerase I Inhibitors and Mechanism of Action Studies in Cancer Cells 
Journal of Medicinal Chemistry  2014;57(4):1289-1298.
Optimization of the lactam ω-aminoalkyl substituents in a series of 7-azaindenoisoquinolines resulted in new anticancer agents with improved Top1 inhibitory potencies and cancer cell cytotoxicities. The new compounds 14–17 and 19 exhibited mean graph midpoint cytotoxicity (GI50) values of 21–71 nM in the NCI panel of 60 human cancer cell cultures. Ternary 7-azaindenoisoquinoline–DNA–Top1 cleavage complexes that persist for up to 6 h were detected in HCT116 colon cancer cells. Ternary complexes containing 7-azaindenoisoquinolines were significantly more stable than those in which camptothecin was incorporated. DNA content distribution histograms showed S-phase block 3 h after drug removal. Drug-induced DNA damage in HCT116 cells was revealed by induction of the histone γ-H2AX marker. The 7-azaindenoisoquinolines were able to partially overcome resistance in several drug-resistant cell lines, and they were not substrates for the ABCB1 drug efflux transporter. Molecular modeling studies indicate that the 7-azaindenoisoquinolines intercalate at the DNA cleavage site in DNA–Top1 covalent complexes with the lactam side chain projecting into the major groove. Overall, the results indicate that the 7-azaindenoisoquinolines are promising anticancer agents that merit further development.
doi:10.1021/jm401471v
PMCID: PMC3983387  PMID: 24502276
3.  Synthesis of Mixed (E,Z)-, (E)-, and (Z)-Norendoxifen with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities 
Journal of medicinal chemistry  2013;56(11):4611-4618.
The first synthesis of the tamoxifen metabolite norendoxifen is reported. This included syntheses of (E)-norendoxifen, (Z)-norendoxifen, and (E,Z)-norendoxifen isomers. (Z)-Norendoxifen displayed affinity for aromatase (Ki 442 nM), estrogen receptor-α (EC50 17 nM), and estrogen receptor-β (EC50 27.5 nM), while the corresponding values for (E)-norendoxifen were aromatase (Ki 48 nM), estrogen receptor-α (EC50 58.7 nM), and estrogen receptor-β (EC50 78.5 nM). Docking and energy minimization studies were performed with (E)-norendoxifen on aromatase, and the results provide a foundation for structure-based drug design. The oral pharmacokinetic parameters for (E,Z)-norendoxifen were determined in mice, and (Z)-norendoxifen was found to result in significantly higher plasma concentrations and exposures (AUC values) than (E)-norendoxifen. The affinities of both isomers for aromatase and the estrogen receptors, as well as the pharmacokinetic results, support the further development of norendoxifen and its analogues for breast cancer treatment.
doi:10.1021/jm400364h
PMCID: PMC4043309  PMID: 23731360
4.  Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Rexinoids with Chemopreventive Potential 
Journal of medicinal chemistry  2013;56(6):2581-2605.
Nuclear receptors, such as the retinoid X receptor (RXR), are proteins that regulate a myriad of cellular processes. Molecules that function as RXR agonists are of special interest for the prevention and control of carcinogenesis. The majority of these ligands possess an acidic moiety that is believed to be key for RXR activation. This communication presents the design, synthesis and biological evaluation of both acidic and non-acidic indenoisoquinolines as new RXR ligands. In addition, a comprehensive structure-activity relationship study is presented that identifies the important features of the indenoisoquinoline rexinoids. The ease of modification of the indenoisoquinoline core and the lack of the necessity of a carboxyl group for activity make them an attractive and unusual family of RXR agonists. This work establishes a structural foundation for the design of new and novel rexinoid cancer chemopreventive agents.
doi:10.1021/jm400026k
PMCID: PMC3623729  PMID: 23472886
5.  Synthesis and Biological Evaluation of Indenoisoquinolines that Inhibit both Tyrosyl-DNA-Phosphodiesterase I (Tdp1) and Topoisomerase I (Top1) 
Journal of medicinal chemistry  2012;56(1):182-200.
Tyrosyl-DNA-phosphodiesterase I (Tdp1) plays a key role in the repair of damaged DNA resulting from the topoisomerase I (Top1) inhibitor camptothecin and a variety of other DNA-damaging anticancer agents. This report documents the design, synthesis, and evaluation of new indenoisoquinolines that are dual inhibitors of both Tdp1 and Top1. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures were used to establish structure-activity relationship. The potencies of the indenoisoquinolines against Tdp1 ranged from 5 μM to 111 μM, which places the more active compounds among the most potent known inhibitors of this target. The cytotoxicity mean-graph midpoints ranged from 0.02 to 2.34 μM. Dual Tdp1-Top1 inhibitors are of interest because the Top1 and Tdp1 inhibitory activities could theoretically work synergistically to create more effective anticancer agents.
doi:10.1021/jm3014458
PMCID: PMC3542538  PMID: 23259865
6.  Identification, Synthesis, and Biological Evaluation of Metabolites of the Experimental Cancer Treatment Drugs Indotecan (LMP400) and Indimitecan (LMP776) and Investigation of Isomerically Hydroxylated Indenoisoquinoline Analogues as Topoisomerase I Poisons 
Journal of medicinal chemistry  2012;55(24):10844-10862.
Hydroxylated analogues of the anticancer topoisomerase I (Top1) inhibitors indotecan (LMP400) and indimitecan (LMP76) have been prepared because: 1) a variety of potent Top1 poisons are known that contain strategically placed hydroxyl groups, which provides a clear rationale for incorporating them in the present case, and 2) the hydroxylated compounds could conceivably serve as synthetic standards for the identification of metabolites. Indeed, incubating LMP400 and LMP776 with human liver microsomes resulted in two major metabolites of each drug, which had HPLC retention times and mass fragmentation patterns identical to the synthetic standards. The hydroxylated indotecan and indimitecan metabolites and analogues were tested as Top1 poisons and for antiproliferative activity in a variety of human cancer cell cultures, and in general were found to be very potent. Differences in activity resulting from the placement of the hydroxyl group are explained by molecular modeling analyses.
doi:10.1021/jm300519w
PMCID: PMC3542640  PMID: 23215354
7.  Identification, Synthesis, and Biological Evaluation of the Metabolites of 3-Amino-6-(3'-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6-36), a Promising Rexinoid Lead Compound for the Development of Cancer Chemotherapeutic and Chemopreventive Agents 
Journal of Medicinal Chemistry  2012;55(12):5965-5981.
Activation of the retinoid X receptor (RXR), which is involved in cell proliferation, differentiation and apoptosis, is a strategy for cancer chemotherapy and chemoprevention, and 3-amino-6-(3'-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6-36) (3) is among the few RXR ligands known. The presently reported studies of 3 include its binding to human plasma proteins, metabolic stability using human liver microsomes, metabolism by human liver microsomes and hepatocytes, and in vivo disposition in rat serum, liver and mammary tissue. Compound 3 was 75% bound to human plasma proteins, and its metabolic stability was much greater than propranolol. One phase I metabolite was formed by human liver microsomes, 7 phase I and II metabolites were formed by human hepatocytes, and 5 metabolites were detected in rat serum and liver after oral administration. The putative metabolites predicted using LC-MS-MS were synthesized to confirm their structures and to provide sufficient material for investigation of induction of RXRE transcriptional activity and inhibition of NFκB.
doi:10.1021/jm3006806
PMCID: PMC3397407  PMID: 22712432
8.  Azaindenoisoquinolines as Topoisomerase I Inhibitors and Potential Anticancer Agents: A Systematic Study of Structure-Activity Relationships 
Journal of Medicinal Chemistry  2012;55(4):1682-1697.
A comprehensive study of a series of azaindenoisoquinoline topoisomerase I (Top1) inhibitors is reported. The synthetic pathways have been developed to prepare 7-, 8-, 9-, and 10-azaindenoisoquinolines. The present study shows that 7-azaindenoisoquinolines possess the greatest Top1 inhibitory activity and cytotoxicity. Additionally, the introduction of a methoxy group into the D-ring of 7-azaindenoisoquinolines improved their biological activities, leading to new lead molecules for further development. A series of QM calculations were performed on the model “sandwich” complexes of azaindenoisoquinolines with flanking DNA base pairs from the Drug–Top1–DNA ternary complex. The results of these calculations demonstrate how changes in two forces contributing to the π–π stacking, dispersion and charge-transfer interactions, affect the binding of the drug to the Top1–DNA cleavage complex and thus modulate the drug’s Top1 inhibitory activity.
doi:10.1021/jm201512x
PMCID: PMC3292051  PMID: 22329436
9.  Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2† 
Journal of Medicinal Chemistry  2011;55(1):367-377.
A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from IC50 of 61 nM to IC50 4.1 nM.
doi:10.1021/jm201251c
PMCID: PMC3262027  PMID: 22206487
10.  7-Azaindenoisoquinolines as Topoisomerase I Inhibitors and Potential Anticancer Agents 
Journal of medicinal chemistry  2011;54(17):6106-6116.
A series of 7-azaindenoisoquinoline topoisomerase I (Top1) inhibitors have been prepared to investigate the effect of increased electron affinity of the aromatic system on the ability to stabilize the Top1-DNA cleavage complex. Ab initio calculations suggest that introduction of nitrogen into the aromatic system of the indenoisoquinolines would facilitate charge transfer complex formation with DNA, thus improving the π-π stacking interactions. The present study shows that 7-azaindenoisoquinolines demonstrate improved water solubility without any decrease in Top1 inhibitory activity or cytotoxicity. Analysis of the biological results reveals that smaller lactam ring substituents enable intercalation into both free DNA and Top1-DNA cleavage complex, whereas larger substituents only allow binding to the cleavage complex, but not free DNA. Free DNA binding suppresses Top1-catalyzed DNA cleavage at high drug concentrations, whereas DNA-cleavage and inhibition of re-ligation occurs at low drug concentration.
doi:10.1021/jm200719v
PMCID: PMC3165090  PMID: 21823606
11.  Potential Chemopreventive Agents Based on the Structure of the Lead Compound 2-Bromo-1-hydroxyphenazine, Isolated from Streptomyces sp., Strain CNS284 
Journal of medicinal chemistry  2010;53(24):8688-8699.
The isolation of 2-bromo-1-hydroxyphenazine from a marine Streptomyces sp., strain CNS284, and its activity against NFκB, suggested that a short and flexible route for the synthesis of this metabolite and a variety of phenazine analogues be developed. Numerous phenazines were subsequently prepared and evaluated as inducers of quinone reductase 1 (QR1) and inhibitors of quinone reductase 2 (QR2), NF-κB, and inducible nitric oxide synthase (iNOS). Several of the active phenazine derivatives displayed IC50 values vs. QR1 induction and QR2 inhibition in the nanomolar range, suggesting they may find utility as cancer chemopreventive agents.
doi:10.1021/jm1011066
PMCID: PMC3010278  PMID: 21105712
12.  Design, Synthesis and Evaluation of Dibenzo[c,h][1,6]naphthyridines as Topoisomerase I Inhibitors and Potential Anticancer Agents 
Journal of medicinal chemistry  2010;53(24):8716-8726.
Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents. Modifications of the indenoisoquinoline A, B and D rings have been extensively studied in order to optimize Top1 inhibitory activity and cytotoxicity. To improve understanding of the forces that stabilize drug-Top1-DNA ternary complexes, the five-membered cyclopentadienone C-ring of the indenoisoquinoline system was replaced by six-membered nitrogen heterocyclic rings, resulting in dibenzo[c,h][1,6]naphthyridines that were synthesized by a novel route and tested for Top1 inhibition. This resulted in several compounds that have unique DNA cleavage site selectivities and potent antitumor activities in a number of cancer cell lines.
doi:10.1021/jm101048k
PMCID: PMC3064471  PMID: 21090809
13.  Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites 
Journal of medicinal chemistry  2010;53(13):5033-5043.
Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF)-α-induced NFκB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, and proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G1 phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities, and the 4′-sulfate inhibited NFκB induction, as well as COX-1 and COX-2 activities. Resveratrol, as well as its 3′-sulfate and 4-sulfate, inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells.
doi:10.1021/jm100274c
PMCID: PMC2917805  PMID: 20527891
14.  Structure-Based Design, Synthesis and Biological Studies of New Anticancer Norindenoisoquinoline Topoisomerase I Inhibitors 
Journal of medicinal chemistry  2010;53(5):1979-1989.
Based on the superimposition of the crystal structures of norindenoisoquinoline 5 and topotecan (2) bound in the topoisomerase I-DNA covalent complex, as well as molecular docking and quantum chemical calculations, the substituted norindenoisoquinoline 14a was designed by transporting the 9-dimethylaminomethyl group of topotecan to the 10-position of the norindenoisoquinoline 5. The desired compound 14a was synthesized and found to possess topoisomerase I inhibitory activity that was slightly better than the starting compound 5. A focused set of 10-substitued norindenoisoquinoline analogues were then synthesized. The imidazole-substituted compound 14c was highly cytotoxic when evaluated in a series of human leukemia, ovarian and breast cancer cells.
doi:10.1021/jm901649x
PMCID: PMC2838169  PMID: 20155916
15.  Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase† 
Journal of medicinal chemistry  2009;52(20):6467-6473.
Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2.
doi:10.1021/jm901167t
PMCID: PMC2770579  PMID: 19775161
16.  Synthesis of Casimiroin and Optimization of Its Quinone Reductase 2 and Aromatase Inhibitory Activities 
Journal of medicinal chemistry  2009;52(7):1873-1884.
An efficient method has been developed to synthesize casimiroin (1), a component of the edible fruit of Casimiroa edulis, on a multigram scale in good overall yield. The route was versatile enough to provide an array of compound 1 analogues that were evaluated as QR2 and aromatase inhibitors. In addition, X-ray crystallography studies of QR2 in complex with compound 1 and one of its more potent analogs has provided insight into the mechanism of action of this new series of QR2 inhibitors. The initial biological investigations suggest that compound 1 and its analogues merit further investigation as potential chemopreventive or chemotherapeutic agents.
doi:10.1021/jm801335z
PMCID: PMC2673050  PMID: 19265439
17.  Design, Synthesis, and Biological Evaluation of Antiviral Agents Targeting Flavivirus Envelope Proteins 
Journal of medicinal chemistry  2008;51(15):4660-4671.
Flavivirus envelope proteins (E proteins) have been shown to play a pivotal role in virus assembly, morphogenesis, and infection of host cells. Inhibition of flavivirus infection of a host cell by means of a small molecule envelope protein antagonist is an attractive strategy for the development of antiviral agents. Virtual screening of the NCI chemical database using the dengue virus envelope protein structure revealed several hypothetical hit compounds. Bioassay results identified a class of thiazole compounds with antiviral potency in cell-based assays. Modification of these lead compounds led to a series of analogues with improved antiviral activity and decreased cytotoxicity. The most active compounds 11 and 36 were effective in the low micromolar concentration range in a cellular assay system.
doi:10.1021/jm800412d
PMCID: PMC2562352  PMID: 18610998
18.  Design, Synthesis, and Biological Evaluation of 14-Substituted Aromathecins as Topoisomerase I Inhibitors 
Journal of medicinal chemistry  2008;51(15):4609-4619.
The aromathecin or “rosettacin” class of topoisomerase I (top1) inhibitors is effectively a “composite” of the natural products camptothecin and luotonin A and the synthetic indenoisoquinolines. The aromathecins have aroused considerable interest following the isolation and total synthesis of 22-hydroxyacuminatine, a rare cytotoxic natural product containing the 12H-5,11a-diazadibenzo[b,h]fluoren-11-one system. We have developed two novel syntheses of this system and prepared a series of 14-substituted aromathecins as novel antiproliferative topoisomerase I poisons. These inhibitors are proposed to act via an intercalation and “poisoning” mechanism identical to camptothecin and the indenoisoquinolines. Many of these compounds possess greater antiproliferative activity and anti-top1 activity than the parent unsubstituted compound (rosettacin) and previously synthesized aromathecins, as well as greater top1 inhibitory activity than 22-hydroxyacuminatine. In addition to potentially aiding solubility and localization to the DNA–enzyme complex, nitrogenous substituents located at the 14-position of the aromathecin system have been proposed to project into the major groove of the top1–DNA complex and hydrogen bond to major-groove amino acids, thereby stabilizing the ternary complex.
doi:10.1021/jm800259e
PMCID: PMC2538619  PMID: 18630891
19.  Total Synthesis and Biological Evaluation of 22-Hydroxyacuminatine 
Journal of medicinal chemistry  2006;49(4):1408-1412.
A total synthesis of 22-hydroxyacuminatine, a cytotoxic alkaloid isolated from Camptotheca acuminata, is reported. The key step in the synthesis involves the reaction of 2,3-dihydro-1H-pyrrolo[3,4-b]quinoline with a brominated phthalide to generate a substituted pentacyclic 12H-5,11a-diazadibenzo[b,h]fluoren-11-one intermediate. Despite its structural resemblance to camptothecin and luotonin A, a biological evaluation of 22-hydroxyacuminatine in a topoisomerase I-deficient cell line P388/CPT45 has confirmed that the observed cytotoxicity is not due to topoisomerase I inhibition. This result is consistent with the hypothesis that π-π stacking is more important than hydrogen bonding interactions in determining topoisomerase I inhibitor binding in the ternary cleavage complex.
doi:10.1021/jm051116e
PMCID: PMC2532531  PMID: 16480276
20.  Synthesis and Anti-HIV Activity of New Metabolically Stable Alkenyldiarylmethane (ADAM) Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) Incorporating N-Methoxy Imidoyl Halide and 1,2,4-Oxadiazole Systems 
Journal of medicinal chemistry  2007;50(14):3314-3321.
The alkenyldiarylmethanes (ADAMs) are a unique class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that are capable of inhibiting HIV-1 reverse transcriptase (RT) through an allosteric mechanism. However, the potential usefulness of the ADAMs is limited by the presence of metabolically labile methyl ester moieties that are hydrolyzed by non-specific esterases present in blood plasma, resulting in the formation of the inactive carboxylic acid metabolites. Therefore, in order to discover metabolically stable ADAMs, the design and synthesis of a new class of ADAMs with N-methoxy imidoyl halide and 1,2,4-oxadiazole systems were attempted. The resulting new ADAM 6 displayed enhanced metabolic stability in rat plasma (t1/2 = 61 h) along with the ability to inhibit HIV-1 reverse transcriptase and the cytopathic effect of HIV-1RF and HIV-1IIIB at submicromolar concentrations.
doi:10.1021/jm070236e
PMCID: PMC2531242  PMID: 17579385
21.  Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane (ADAM) HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 
Journal of medicinal chemistry  2005;48(19):6140-6155.
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, eighteen novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-cyanophenyl or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl, or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma.
doi:10.1021/jm050452s
PMCID: PMC2528834  PMID: 16162014
22.  Synthesis and Evaluation of Indenoisoquinoline Topoisomerase I Inhibitors Substituted with Nitrogen Heterocycles 
Journal of medicinal chemistry  2006;49(21):6283-6289.
In connection with an ongoing investigation of indenoisoquinoline topoisomerase I (Top1) inhibitors as potential therapeutic agents, the intercalation pharmacophore possessing di(methoxy) and methylenedioxy substituents was held constant and new derivatives were synthesized with nitrogen heterocycles appended to the lactam side chain. Compounds were evaluated for Top1 inhibition and for cytotoxicity in the National Cancer Institute’s human cancer cell screen. Some of the more potent derivatives were also screened for in vivo activity in a hollow fiber assay. The results of these studies indicate that lactam substituents possessing nitrogen heterocycles can provide highly cytotoxic compounds with potent Top1 inhibition. Molecular modeling of these compounds in complex with DNA and Top1 suggests that some of the lactam substituents are capable of interacting with the DNA base pairs above and below the site of intercalation and/or with Top1 amino acid residues, resulting in increased biological activity.
doi:10.1021/jm060564z
PMCID: PMC2526314  PMID: 17034134
23.  A Systematic Study of Nitrated Indenoisoquinolines Reveals a Potent Topoisomerase I Inhibitor 
Journal of medicinal chemistry  2006;49(26):7740-7753.
The biological activity of indenoisoquinoline topoisomerase I inhibitors is significantly enhanced by nitration of the isoquinoline ring. In the present study, nitrated analogues were synthesized with the indenone ring substituted with methoxy groups to further explore a previously identified structure-activity relationship between the nitrated isoquinoline ring and a methylenedioxy-substituted indenone ring. The results indicate that a single methoxy group at the 9-position of an indenoisoquinoline affords superior biological activity. Hypothetical binding models have been developed in order to rationalize these results and they indicate that π-stacking between the indenoisoquinolines and DNA base pairs, as visualized by electrostatic complementarity, is important for the intercalation and biological activity of the indenoisoquinoline analogues. Collectively, the analysis of methoxy groups on the indenone ring also illustrates a strict steric requirement for substituents extending towards the non-scissile DNA backbone and emphasizes a need for planarity to afford potent biological activity.
doi:10.1021/jm060974n
PMCID: PMC2526352  PMID: 17181156
24.  Synthesis and Cancer Chemopreventive Activity of Zapotin, a Natural Product from Casimiroa edulis 
Journal of medicinal chemistry  2007;50(2):350-355.
An efficient method has been developed to synthesize zapotin (5,6,2′,6′-tetramethoxyflavone), a component of the edible fruit Casimiroa edulis, on multi-gram scale. The synthesis utilizes a regioselective C-acylation of a dilithium dianion derived from a substituted o-hydroxyactophenone to afford a β-diketone intermediate that can be cyclized to zapotin in good overall yield, thus avoiding the inefficient Baker-Venkataraman rearrangement pathway. Zapotin was found to induce both cell differentiation and apoptosis with cultured human promyelocytic leukemia cells (HL-60 cells). In addition, the compound inhibits 12-O-tetradecanoylphorbol 13-acetate (TPAc)-induced ornithine decarboxylase (ODC) activity with human bladder carcinoma cells (T24 cells), and TPA-induced nuclear factor-kappa B (NF-κB) activity with human hepatocellular liver carcinoma cells (HepG2 cells). These data suggest that zapotin merits further investigation as a potential cancer chemopreventive agent.
doi:10.1021/jm060915+
PMCID: PMC2523270  PMID: 17228877
25.  Investigation of the Lactam Side Chain Length Necessary for Optimal Indenoisoquinoline Topoisomerase I Inhibition and Cytotoxicity in Human Cancer Cell Cultures 
Journal of medicinal chemistry  2007;50(9):2040-2048.
Indenoisoquinolines with lactam substituents such as ethylamino, propylamino, and butylamino have previously demonstrated potent biological activity, but optimal length has never been established. In the present study, a series of simplified indenoisoquinoline analogues possessing a linker spacing of 0–12 carbon atoms between the lactam nitrogen and the terminal amino group have been prepared, determining that 2–4 atom lengths are optimal for topoisomerase I inhibition and cytotoxicity. Using these lengths, analogues were prepared with the amino group and portions of the linker replaced by a pyridine ring. A three-carbon spacer within the pyridine series still demonstrated potent topoisomerase I inhibition.
doi:10.1021/jm0613119
PMCID: PMC2519145  PMID: 17402722

Results 1-25 (25)