Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
Year of Publication
Document Types
1.  Discovery, Synthesis and Biological Evaluation of Novel SMN Protein Modulators 
Journal of medicinal chemistry  2011;54(18):6215-6233.
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder affecting the expression or function of survival motor neuron protein (SMN) due to the homozygous deletion or rare point mutations in the survival motor neuron gene 1 (SMN1). The human genome includes a second nearly identical gene called SMN2 that is retained in SMA. SMN2 transcripts undergo alternative splicing with reduced levels of SMN. Up-regulation of SMN2 expression, modification of its splicing, or inhibition of proteolysis of the truncated protein derived from SMN2 have been discussed as potential therapeutic strategies for SMA. In this manuscript, we detail the discovery of a series of arylpiperidines as novel modulators of SMN protein. Systematic hit-to-lead efforts significantly improved potency and efficacy of the series in the primary and orthogonal assays. Structure property relationships including microsomal stability, cell permeability and in vivo pharmacokinetics (PK) studies were also investigated. We anticipate that a lead candidate chosen from this series may serve as a useful probe for exploring the therapeutic benefits of SMN protein up-regulation in SMA animal models, and a starting point for clinical development.
PMCID: PMC3174349  PMID: 21819082
2.  A Basis for Reduced Chemical Library Inhibition of Firefly Luciferase Obtained from Directed Evolution 
Journal of medicinal chemistry  2009;52(5):1450-1458.
We measured the “druggability” of the ATP-dependent luciferase derived from the firefly Photuris pennsylvanica that was optimized using directed evolution (Ultra-Glo™, Promega). Quantitative high throughput screening (qHTS) was used to determine IC50’s of 198,899 samples against a formulation of Ultra-Glo luciferase (Kinase-Glo™). We found that only 0.1% of the Kinase-Glo inhibitors showed an IC50 < 10 μM compared to 0.9% found from a previous qHTS against the firefly luciferase from Photinus pyralis (lucPpy). Further, the maximum affinity identified in the lucPpy qHTS was 50 nM while for Kinase-Glo this value increased to 600 nM. Compounds with interactions stretching outside the luciferin binding pocket were largely lost with Ultra-Glo luciferase. Therefore, Ultra-Glo luciferase will show less compound interference when used as an ATP sensor compared to lucPpy. This study demonstrates the power of large-scale quantitative analysis of structure-activity relationships (>100K compounds) in addressing important questions such as a target's druggability.
PMCID: PMC3430137  PMID: 19215089
chemical profiling; enzyme assay; PubChem; luciferase; quantitative high-throughput screening
3.  Evaluation of Quinazoline analogues as Glucocerebrosidase Inhibitors with Chaperone activity 
Journal of medicinal chemistry  2011;54(4):1033-1058.
Gaucher disease is a Lysosomal Storage Disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity – enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC.
PMCID: PMC3103057  PMID: 21250698
4.  Evaluation of Substituted N,N′-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase 
The metabolism of cancer cells is altered to support rapid proliferation. Pharmacological activators of a tumor cell specific pyruvate kinase isozyme (PKM2) may be an approach for altering the classic Warburg effect characteristic of aberrant metabolism in cancer cells yielding a novel anti-proliferation strategy. In this manuscript we detail the discovery of a series of substituted N,N′-diarylsulfonamides as activators of PKM2. The synthesis of numerous analogues and the evaluation of structure activity relationships are presented as well as assessments of mechanism and selectivity. Several agents are found that have good potencies and appropriate solubility for use as chemical probes of PKM2 including 55 (AC50 = 43 nM, maximum response = 84%; solubility = 7.3 μg/mL), 56 (AC50 = 99 nM, maximum response = 84%; solubility = 5.7 μg/mL) and 58 (AC50 = 38 nM, maximum response = 82%; solubility = 51.2 μg/mL). The small molecules described here represent first-in-class activators of PKM2
PMCID: PMC2818804  PMID: 20017496
Warburg effect; pyruvate kinase; cellular metabolism; high-throughput screening; small molecule activators
5.  Identification and Optimization of Inhibitors of Trypanosomal Cysteine Proteases: Cruzain, Rhodesain, and TbCatB 
Journal of medicinal chemistry  2010;53(1):52-60.
Trypanosoma cruzi and Trypanosoma brucei are parasites that cause Chagas’ disease and African sleeping sickness, respectively. Both parasites rely on essential cysteine proteases for survival, cruzain for T. cruzi and TbCatB/rhodesain for T. brucei. A recent quantitative high-throughput screen of cruzain identified triazine nitriles, which are known inhibitors of other cysteine proteases, as reversible inhibitors of the enzyme. Structural modifications detailed herein, including core scaffold modification from triazine to purine, improved the in vitro potency against both cruzain and rhodesain by 350-fold, while also gaining activity against T. brucei parasites. Selected compounds were screened against a panel of human cysteine and serine proteases to determine selectivity, and a co-crystal was obtained of our most potent analog bound to Cruzain.
PMCID: PMC2804034  PMID: 19908842
6.  Quantitative Analyses of Aggregation, Autofluorescence, and Reactivity Artifacts in a Screen for Inhibitors of a Thiol Protease 
Journal of medicinal chemistry  2010;53(1):37-51.
The perceived and actual burden of false positives in high-throughput screening has received considerable attention; however, few studies exist on the contributions of distinct mechanisms of non-specific effects like chemical reactivity, assay signal interference, and colloidal aggregation. Here, we analyze the outcome of a screen of 197,861 diverse compounds in a concentration-response format against the cysteine protease cruzain, a target expected to be particularly sensitive to reactive compounds and using an assay format with light detection in the short-wavelength region where significant compound autofluorescence is typically encountered. Approximately 1.9% of all compounds screened were detergent-sensitive inhibitors. The contribution from autofluorescence and compounds bearing reactive functionalities was dramatically lower: of all hits, only 1.8% were autofluorescent and 1.48% contained reactive or undesired functional groups. The distribution of false positives was relatively constant across library sources. The simple step of including detergent in the assay buffer suppressed the nonspecific effect of approximately 93% of the original hits.
PMCID: PMC2992957  PMID: 19908840
7.  Structure-Mechanism Insights and the Role of Nitric Oxide Donation Guide the Development of Oxadiazole-2-Oxides as Therapeutic Agents against Schistosomiasis 
Journal of medicinal chemistry  2009;52(20):6474-6483.
Schistosomiasis is a chronic parasitic disease affecting hundreds of millions of individuals worldwide. Current treatment depends on a single agent, praziquantel, raising concerns of emergence of resistant parasites. Here, we continue our explorations of an oxadiazole-2-oxide class of compounds we recently identified as inhibitors of thioredoxin glutathione reductase (TGR), a selenocysteine-containing flavoenzyme required by the parasite to maintain proper cellular redox balance. Through systematic evaluation of the core molecular structure of this chemotype we define the essential pharmacophore, establish a link between the nitric oxide donation and TGR inhibition, determine the selectivity for this chemotype versus related reductase enzymes and present evidence that these agents can be modified to possess appropriate drug metabolism and pharmacokinetic properties. The mechanistic link between exogenous NO donation and parasite injury is expanded and better defined. The results of these studies verify the utility of oxadiazole-2-oxides as novel inhibitors of TGR and as efficacious anti-schistosomal reagents.
PMCID: PMC2772170  PMID: 19761212
8.  Comprehensive Mechanistic Analysis of Hits from High-Throughput and Docking Screens against β-Lactamase 
Journal of medicinal chemistry  2008;51(8):2502-2511.
High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate “hit lists”; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against β-lactamase using quantitative HTS (qHTS). Of the 1274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting β-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 µM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.
PMCID: PMC2655312  PMID: 18333608

Results 1-8 (8)