PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1752)
 

Clipboard (0)
None
Journals
Year of Publication
more »
Document Types
1.  Probing the Carboxyester Side Chain in Controlled Deactivation (−)-Δ8-Tetrahydrocannabinols 
Journal of medicinal chemistry  2014;58(2):665-681.
We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemo-type for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well as controlled deactivation by plasma esterases. We have also probed the chain’s polar characteristics with regard to fast onset and short duration of action. Our lead molecule, namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for CB receptors and is deactivated by plasma esterases while the respective acid metabolite is inactive. In further in vitro and in vivo experiments, the compound was found to be a remarkably potent and efficacious CB1 receptor agonist with relatively fast onset/offset of action.
doi:10.1021/jm501165d
PMCID: PMC4306527  PMID: 25470070
2.  Exploitation of the Ability of γ-Tocopherol to Facilitate Membrane Co-localization of Akt and PHLPP1 to Develop PHLPP1-Targeted Akt Inhibitors 
Journal of medicinal chemistry  2015;58(5):2290-2298.
Previously, we reported that Akt inactivation by γ-tocopherol (2) in PTEN-negative prostate cancer cells resulted from its unique ability to facilitate membrane co-localization of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase isoform 1), a Ser473-specific Akt phosphatase, through pleckstrin homology (PH) domain binding. This finding provided a basis for exploiting 2 to develop a novel class of PHLPP1-targeted Akt inhibitors. Here, we used 3 (γ-VE5), a side chain-truncated 2 derivative, as a scaffold for lead optimization. The proof-of-concept of this structural optimization was obtained by 20, which exhibited higher antitumor efficacy than 3 in PTEN-negative cancer cells through PHLPP1-facilitated Akt inactivation. Like 3, 20 preferentially recognized the PH domains of Akt and PHLPP1, as its binding affinities for other PH domains, including those of ILK and PDK1, were an order-of-magnitude lower. Moreover, 20 was orally active in suppressing xenograft tumor growth in nude mice, which underlines the translational potential of this new class of Akt inhibitor in PTEN-deficient cancers.
Graphical abstract
doi:10.1021/jm501751b
PMCID: PMC4720140  PMID: 25689347
3.  Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s) 
Journal of Medicinal Chemistry  2015;59(1):44-60.
Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs.
doi:10.1021/acs.jmedchem.5b01303
PMCID: PMC4716578  PMID: 26529344
4.  6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors 
Journal of medicinal chemistry  2015;58(17):6938-6959.
2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting.
doi:10.1021/acs.jmedchem.5b00801
PMCID: PMC4714714  PMID: 26317331
5.  Novel 5-Substituted Pyrrolo[2,3-d]pyrimidines as Dual Inhibitors of Glycinamide Ribonucleotide Formyltransferase and 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase and as Potential Antitumor Agents 
Journal of medicinal chemistry  2015;58(3):1479-1493.
A new series of 5-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 6–11 with varying chain lengths (n = 1–6) were designed and synthesized as hybrids of the clinically used anticancer drug pemetrexed (PMX) and our 6-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 2c and 2d with folate receptor (FR) α and proton-coupled folate transporter (PCFT) uptake specificity over the reduced folate carrier (RFC) and inhibition of de novo purine nucleotide biosynthesis at glycinamide ribonucleotide formyltransferase (GARFTase). Compounds 6–11 inhibited KB human tumor cells in the order 9 = 10 > 8 > 7 > 6 = 11. Compounds 8–10 were variously transported by FRα, PCFT, and RFC and, unlike PMX, inhibited de novo purine nucleotide rather than thymidylate biosynthesis. The antiproliferative effects of 8 and 9 appeared to be due to their dual inhibitions of both GARFTase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase. Our studies identify a unique structure–activity relationship for transport and dual target inhibition.
doi:10.1021/jm501787c
PMCID: PMC4714715  PMID: 25602637
6.  Design, Synthesis, Calorimetry and Crystallographic analysis of 2-Alkylaminoethyl-1,1-Bisphosphonates as inhibitors of Trypanosoma cruzi Farnesyl Diphosphate Synthase 
Journal of medicinal chemistry  2012;55(14):6445-6454.
Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against proliferation of Trypanosoma cruzi--the etiologic agent of American trypanosomiasis (Chagas disease)--exhibiting IC50 values in the nanomolar range against the parasites. This activity is associated with inhibition at the low nanomolar level of the T. cruzi farnesyl diphosphate synthase (TcFPPS). X-ray structures and thermodynamic data of the complexes TcFPPS with five compounds of this family show that the inhibitors bind to the allylic site of the enzyme with their alkyl chain occupying the cavity that binds the isoprenoid chain of the substrate. The compounds bind to TcFPPS with unfavorable enthalpy compensated by a favorable entropy that results from a delicate balance between two opposing effects: the loss of conformational entropy due to freezing of single bond rotations, and the favorable burial of the hydrophobic alkyl chains. The data suggest that introduction of strategically placed double bonds and methyl branches should increase affinity substantially.
doi:10.1021/jm300425y
PMCID: PMC4710095  PMID: 22715997
Bisphosphonate; Trypanosoma cruzi; Chagas disease; farnesyl diphosphate synthase; FPPS; IPP; DMAPP; ITC; farnesyl pyrophosphate synthase; mevalonate pathway
7.  Conformational Analysis of the DFG-out Kinase Motif and Biochemical Profiling of Structurally Validated Type II Inhibitors 
Journal of medicinal chemistry  2014;58(1):466-479.
Structural coverage of the human kinome has been steadily increasing over time. The structures provide valuable insights into the molecular basis of kinase function and also provide a foundation for understanding the mechanisms of kinase inhibitors. There are a large number of kinase structures in the PDB for which the Asp and Phe of the DFG motif on the activation loop swap positions, resulting in the formation of a new allosteric pocket. We refer to these structures as “classical DFG-out” conformations in order to distinguish them from conformations which have also been referred to as DFG-out in the literature but which do not have a fully formed allosteric pocket. We have completed a structural analysis of almost two hundred small molecule inhibitors bound to classical DFG-out conformations; we find that they are recognized by both type I and type II inhibitors. In contrast, we find that non-classical DFG-out conformations strongly select against type II inhibitors because these structures have not formed a large enough allosteric pocket to accommodate this type of binding mode. In the course of this study we discovered that the number of structurally validated type II inhibitors that can be found in the PDB and that are also represented in publicly available biochemical profiling studies of kinase inhibitors is very small. We have obtained new profiling results for several additional structurally validated type II inhibitors identified through our conformational analysis. Although the available profiling data for type II inhibitors is still much smaller than for type I inhibitors, a comparison of the two datasets supports the conclusion that type II inhibitors are more selective than type I. We comment on the possible contribution of the DFG-in to DFG-out conformational reorganization to the selectivity.
doi:10.1021/jm501603h
PMCID: PMC4326797  PMID: 25478866
8.  Discovery, Synthesis, and Molecular Pharmacology of Selective Positive Allosteric Modulators of the δ-Opioid Receptor 
Journal of medicinal chemistry  2015;58(10):4220-4229.
Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential or receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, β-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression.
Graphical abstract
doi:10.1021/acs.jmedchem.5b00007
PMCID: PMC4703104  PMID: 25901762
9.  Highly Selective Salicylketoxime-Based Estrogen Receptor β Agonists Display Antiproliferative Activities in a Glioma Model 
Journal of Medicinal Chemistry  2015;58(3):1184-1194.
Estrogen receptor β (ERβ) selective agonists are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Their development is particularly challenging, since differences in the ligand binding cavities of the two ER subtypes α and β are minimal. We have carried out a rational design of new salicylketoxime derivatives which display unprecedentedly high levels of ERβ selectivity for this class of compounds, both in binding affinity and in cell-based functional assays. An endogenous gene expression assay was used to further characterize the pharmacological action of these compounds. Finally, these ERβ-selective agonists were found to inhibit proliferation of a glioma cell line in vitro. Most importantly, one of these compounds also proved to be active in an in vivo xenograft model of human glioma, thus demonstrating the high potential of this type of compounds against this devastating disease.
doi:10.1021/jm501829f
PMCID: PMC4610302  PMID: 25559213
10.  Design, Synthesis, and Biological Evaluation of Tetrazole Analogs of Cl-Amidine as Protein Arginine Deiminase Inhibitors 
Journal of Medicinal Chemistry  2015;58(3):1337-1344.
Protein arginine deiminases (PADs) catalyze the post-translational hydrolysis of arginine residues to form citrulline. This once obscure modification is now known to play a key role in the etiology of multiple autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, lupus, and ulcerative colitis) and in some forms of cancer. Among the five human PADs (PAD1, -2, -3, -4, and -6), it is unclear which isozyme contributes to disease pathogenesis. Toward the identification of potent, selective, and bioavailable PAD inhibitors that can be used to elucidate the specific roles of each isozyme, we describe tetrazole analogs as suitable backbone amide bond bioisosteres for the parent pan PAD inhibitor Cl-amidine. These tetrazole based analogs are highly potent and show selectivity toward particular isozymes. Importantly, one of the compounds, biphenyl tetrazole tert-butyl Cl-amidine (compound 13), exhibits enhanced cell killing in a PAD4 expressing osteosarcoma bone marrow (U2OS) cell line and can also block the formation of neutrophil extracellular traps. These bioisosteres represent an important step in our efforts to develop stable, bioavailable, and selective inhibitors for the PADs.
doi:10.1021/jm501636x
PMCID: PMC4610306  PMID: 25559347
11.  Exploration of Cyanine Compounds as Selective Inhibitors of Protein Arginine Methyltransferases: Synthesis and Biological Evaluation 
Journal of Medicinal Chemistry  2015;58(3):1228-1243.
Protein arginine methyltransferase 1 (PRMT1) is involved in many biological activities, such as gene transcription, signal transduction, and RNA processing. Overexpression of PRMT1 is related to cardiovascular diseases, kidney diseases, and cancers; therefore, selective PRMT1 inhibitors serve as chemical probes to investigate the biological function of PRMT1 and drug candidates for disease treatment. Our previous work found trimethine cyanine compounds that effectively inhibit PRMT1 activity. In our present study, we systematically investigated the structure–activity relationship of cyanine structures. A pentamethine compound, E-84 (compound 50), showed inhibition on PRMT1 at the micromolar level and 6- to 25-fold selectivity over CARM1, PRMT5, and PRMT8. The cellular activity suggests that compound 50 permeated the cellular membrane, inhibited cellular PRMT1 activity, and blocked leukemia cell proliferation. Additionally, our molecular docking study suggested compound 50 might act by occupying the cofactor binding site, which provided a roadmap to guide further optimization of this lead compound.
doi:10.1021/jm501452j
PMCID: PMC4610307  PMID: 25559100
12.  A Methylene Group on C-2 of 24,24-Difluoro-19-nor-1α,25-Dihydroxyvitamin D3 Markedly Increases Bone Calcium Mobilization in vivo 
Journal of medicinal chemistry  2015;58(24):9731-9741.
Four side chain fluorinated analogues of 1α,25-dihydroxy-19-norvitamin D have been prepared in convergent syntheses using the Wittig-Horner reaction as a key step. Structures and absolute configurations of analogues 3 and 5 were confirmed by X-ray crystallography. All analogues showed high potency in HL-60 cell differentiation and vitamin D-24-hydroxylase (24-OHase) transcription as compared to 1α,25-dihydroxyvitamin D3 (1). Most important is that all of the 20S-configured derivatives (4 and 6) had high bone mobilizing activity in vivo. However, in the 20R series, a 2-methylene group was required for high bone mobilizing activity. A change in positioning of the 20R molecule in the vitamin D receptor when the 2-methylene group is present may provide new insight into the molecular basis of bone calcium mobilization induced by vitamin D.
doi:10.1021/acs.jmedchem.5b01564
PMCID: PMC4698824  PMID: 26630444
Vitamin D analogues; 19-Norvitamin D; Vitamin D receptor; Cellular HL-60 differentiation; calcemic activity; CYP24A1 hydroxylase; 24-OHase transcription
13.  Synthesis of Fluorine-Containing Phosphodiesterase 10A (PDE10A) Inhibitors and the In Vivo Evaluation of F-18 Labeled PDE10A PET Tracers in Rodent and Nonhuman Primate 
Journal of medicinal chemistry  2015;58(21):8584-8600.
A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [11C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a–j, 19d–j, 20a–b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [18F]18a–e, [18F]18g, and [18F]20a were radiosynthesized by 18F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [18F]18a–d and [18F]20a. Micro-PET studies of [18F]18d and [18F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a 18F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington’s disease and schizophrenia.
doi:10.1021/acs.jmedchem.5b01205
PMCID: PMC4697445  PMID: 26430878
14.  Optimization of Potent and Selective Quinazolinediones: Inhibitors of Respiratory Syncytial Virus That Block RNA-Dependent RNA-Polymerase Complex Activity 
Journal of medicinal chemistry  2014;57(24):10314-10328.
A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 µM), moderate efficacy in reducing viral progeny (4.2 log at 10 µM), and marginal cytotoxic liability (selectivity index, SI ~ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300–500 nM, CC50 > 50 µM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.
doi:10.1021/jm500902x
PMCID: PMC4281105  PMID: 25399509
15.  Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes 
Journal of Medicinal Chemistry  2015;58(24):9639-9652.
We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity.
doi:10.1021/acs.jmedchem.5b01283
PMCID: PMC4690987  PMID: 26599611
16.  Fragment-Based Exploration of Binding Site Flexibility in Mycobacterium tuberculosis BioA 
Journal of medicinal chemistry  2015;58(13):5208-5217.
The PLP-dependent transaminase (BioA) of Mycobacterium tuberculosis and other pathogens that catalyzes the second step of biotin biosynthesis is a now well-validated target for antibacterial development. Fragment screening by differential scanning fluorimetry has been performed to discover new chemical scaffolds and promote optimization of existing inhibitors. Calorimetry confirms binding of six molecules with high ligand efficiency. Thermodynamic data identifies which molecules bind with the enthalpy driven stabilization preferred in compounds that represent attractive starting points for future optimization. Crystallographic characterization of complexes with these molecules reveals the dynamic nature of the BioA active site. Different side chain conformational states are stabilized in response to binding by different molecules. A detailed analysis of conformational diversity in available BioA structures is presented, resulting in the identification of two states that might be targeted with molecular scaffolds incorporating well-defined conformational attributes. This new structural data can be used as part of a scaffold hopping strategy to further optimize existing inhibitors or create new small molecules with improved therapeutic potential.
doi:10.1021/acs.jmedchem.5b00092
PMCID: PMC4687966  PMID: 26068403
17.  Design, Synthesis, Biochemical, and Antiviral Evaluations of C6 Benzyl and C6 Biarylmethyl Substituted 2-Hydroxylisoquinoline-1,3-diones: Dual Inhibition against HIV Reverse Transcriptase-Associated RNase H and Polymerase with Antiviral Activities 
Journal of Medicinal Chemistry  2014;58(2):651-664.
Reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current chemotherapy against human immunodeficiency virus (HIV). Although numerous chemotypes have been reported to inhibit HIV RNase H biochemically, few show significant antiviral activity against HIV. We report herein the design, synthesis, and biological evaluations of a novel variant of 2-hydroxyisoquinoline-1,3-dione (HID) scaffold featuring a crucial C-6 benzyl or biarylmethyl moiety. The synthesis involved a recently reported metal-free direct benzylation between tosylhydrazone and boronic acid, which allowed the generation of structural diversity for the hydrophobic aromatic region. Biochemical studies showed that the C-6 benzyl and biarylmethyl HID analogues, previously unknown chemotypes, consistently inhibited HIV RT-associated RNase H and polymerase with IC50s in low to submicromolar range. The observed dual inhibitory activity remained uncompromised against RT mutants resistant to non-nucleoside RT inhibitors (NNRTIs), suggesting the involvement of binding site(s) other than the NNRTI binding pocket. Intriguingly, these same compounds inhibited the polymerase, but not the RNase H function of Moloney Murine Leukemia Virus (MoMLV) RT and also inhibited Escherichia coli RNase H. Additional biochemical testing revealed a substantially reduced level of inhibition against HIV integrase. Molecular docking corroborates favorable binding of these analogues to the active site of HIV RNase H. Finally, a number of these analogues also demonstrated antiviral activity at low micromolar concentrations.
doi:10.1021/jm501132s
PMCID: PMC4306517  PMID: 25522204
18.  Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors 
Journal of Medicinal Chemistry  2014;58(2):994-1004.
Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial (Holden, , Proc. Natl. Acad. Sci. U.S.A.2013, 110, 1812724145412). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.
doi:10.1021/jm501723p
PMCID: PMC4306518  PMID: 25522110
19.  Repositioning Proton Pump Inhibitors as Anticancer Drugs by Targeting the Thioesterase Domain of Human Fatty Acid Synthase 
Journal of Medicinal Chemistry  2014;58(2):778-784.
Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of free fatty acids, is up-regulated in many cancers. FASN is essential for cancer cell survival and contributes to drug resistance and poor prognosis. However, it is not expressed in most nonlipogenic normal tissues. Thus, FASN is a desirable target for drug discovery. Although different FASN inhibitors have been identified, none has successfully moved into clinical use. In this study, using in silico screening of an FDA-approved drug database, we identified proton pump inhibitors (PPIs) as effective inhibitors of the thioesterase activity of human FASN. Further investigation showed that PPIs inhibited proliferation and induced apoptosis of cancer cells. Supplementation of palmitate, the end product of FASN catalysis, rescued cancer cells from PPI-induced cell death. These findings provide new evidence for the mechanism by which this FDA-approved class of compounds may be acting on cancer cells.
doi:10.1021/jm501543u
PMCID: PMC4306520  PMID: 25513712
20.  Mechanistic Studies on the Application of DNA Aptamers as Inhibitors of 2-Oxoglutarate-Dependent Oxygenases 
Journal of medicinal chemistry  2012;55(7):3546-3552.
The Escherichia coli (E. coli) AlkB protein and its functional human homologues belong to a subfamily of 2-oxoglutarate (2OG)-dependent oxygenases (2OG oxygenases for simplicity) that enable the repair of cytotoxic methylation damage in nucleic acids and which catalyse t-RNA oxidations. DNA alkylation is a major mechanism of action for cytotoxic anti-cancer drugs. Thus, the inhibition of oxidative demethylation, catalyzed by these enzymes, has the potential to improve the efficacy of chemotherapies. Here we report that oligonucleotide aptamers constitute a new class of potent inhibitors of 2OG oxygenases. DNA aptamers can selectively bind to AlkB, with nanomolar affinity, and efficiently inhibit catalysis. The mechanism of inhibition was studied by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. Inhibition constants of the aptamers were determined and shown to correlate well with Kd values. The results of kinetic analyses imply that the aptamers bind AlkB away from the active site. Our findings should stimulate the development of oligonucleotide aptamers for human homologues of AlkB and further their study as potential enhancers of chemotherapy efficiency.
doi:10.1021/jm300243h
PMCID: PMC4681096  PMID: 22471443
21.  Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts 
Journal of Medicinal Chemistry  2015;58(23):9334-9344.
A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780).
doi:10.1021/acs.jmedchem.5b01329
PMCID: PMC4678411  PMID: 26596892
22.  Design of Chemically Stable, Potent, and Efficacious MDM2 Inhibitors That Exploit the Retro-Mannich Ring-Opening-Cyclization Reaction Mechanism in Spiro-oxindoles 
Journal of Medicinal Chemistry  2014;57(24):10486-10498.
Inhibition of the MDM2–p53 protein–protein interaction is being actively pursued as a new anticancer therapeutic strategy, and spiro-oxindoles have been designed as a class of potent and efficacious small-molecule inhibitors of this interaction (MDM2 inhibitors). Our previous study showed that some of our first-generation spiro-oxindoles undergo a reversible ring-opening-cyclization reaction that, from a single compound in protic solution, results in an equilibrium mixture of four diastereoisomers. By exploiting the ring-opening-cyclization reaction mechanism, we have designed and synthesized a series of second-generation spiro-oxindoles with symmetrical pyrrolidine C2 substitution. These compounds undergo a rapid and irreversible conversion to a single, stable diastereoisomer. Our study has yielded compound 31 (MI-1061), which binds to MDM2 with Ki = 0.16 nM, shows excellent chemical stability, and achieves tumor regression in the SJSA-1 xenograft tumor model in mice.
doi:10.1021/jm501541j
PMCID: PMC4281096  PMID: 25496041
23.  Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity 
Journal of medicinal chemistry  2015;58(17):6909-6927.
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.
Graphical abstract
doi:10.1021/acs.jmedchem.5b00709
PMCID: PMC4676410  PMID: 26301736
24.  New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics 
Journal of Medicinal Chemistry  2014;58(2):814-826.
Compstatin peptides are complement inhibitors that bind and inhibit cleavage of complement C3. Peptide binding is enhanced by hydrophobic interactions; however, poor solubility promotes aggregation in aqueous environments. We have designed new compstatin peptides derived from the W4A9 sequence (Ac-ICVWQDWGAHRCT-NH2, cyclized between C2 and C12), based on structural, computational, and experimental studies. Furthermore, we developed and utilized a computational framework for the design of peptides containing non-natural amino acids. These new compstatin peptides contain polar N-terminal extensions and non-natural amino acid substitutions at positions 4 and 9. Peptides with α-modified non-natural alanine analogs at position 9, as well as peptides containing only N-terminal polar extensions, exhibited similar activity compared to W4A9, as quantified via ELISA, hemolytic, and cell-based assays, and showed improved solubility, as measured by UV absorbance and reverse-phase HPLC experiments. Because of their potency and solubility, these peptides are promising candidates for therapeutic development in numerous complement-mediated diseases.
doi:10.1021/jm501345y
PMCID: PMC4306506  PMID: 25494040
25.  The Plant Growth Regulator Daminozide is a Selective Inhibitor of the Human KDM2/7 Histone Demethylases 
Journal of medicinal chemistry  2012;55(14):6639-6643.
The JmjC oxygenases catalyse the N-demethylation of Nε-methyl lysine residues in histones and are current therapeutic targets. A set of 2-oxoglutarate analogues were screened using a unified assay platform for JmjC demethylases and related oxygenases. Results led to the finding that daminozide (N-(dimethylamino)succinamic acid, 160 Da), a plant growth regulator, selectively inhibits the KDM2/7 JmjC subfamily. Kinetic and crystallographic studies reveal daminozide chelates the active site metal via its hydrazide carbonyl and dimethylamino groups.
doi:10.1021/jm300677j
PMCID: PMC4673902  PMID: 22724510

Results 1-25 (1752)