PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A Peritoneal Dialysis Regimen Low in Glucose and Glucose Degradation Products Results in Increased Cancer Antigen 125 and Peritoneal Activation 
♦ Background: Glucose and glucose degradation products (GDPs) in peritoneal dialysis fluids (PDFs) are both thought to mediate progressive peritoneal worsening.
♦ Methods: In a multicenter, prospective, randomized crossover study, incident continuous ambulatory peritoneal dialysis patients were treated either with conventional lactate-buffered PDF (sPD regimen) or with a regimen low in glucose and GDPs: Nutrineal×1, Extraneal×1, and Physioneal×2 (NEPP regimen; all solutions: Baxter Healthcare, Utrecht, Netherlands). After 6 months, patients were switched to the alternative regimen for another 6 months. After 6 weeks of run-in, before the switch, and at the end of the study, 4-hour peritoneal equilibration tests were performed, and overnight effluents were analyzed for cells and biomarkers. Differences between the regimens were assessed by multivariate analysis corrected for time and regimen sequence.
♦ Results: The 45 patients who completed the study were equally distributed over both groups. During NEPP treatment, D4/D0 glucose was lower (p < 0.01) and D/P creatinine was higher (p = 0.04). In NEPP overnight effluent, mesothelial cells (p < 0.0001), cancer antigen 125 (p < 0.0001), hyaluronan (p < 0.0001), leukocytes (p < 0.001), interleukins 6 (p = 0.001) and 8 (p = 0.0001), and vascular endothelial growth factor (VEGF, p < 0.0001) were increased by a factor of 2 – 3 compared with levels in sPD effluent. The NEPP regimen was associated with higher transport parameters, but that association disappeared after the addition of VEGF to the model. The association between NEPP and higher effluent levels of VEGF could not be attributed to glucose and GDP loads.
♦ Conclusions: Study results indicate preservation of the mesothelium and increased peritoneal activation during NEPP treatment. Whether the increase in VEGF reflects an increase in mesothelial cell mass or whether it points to another, undesirable mechanism cannot be determined from the present study. Longitudinal studies are needed to finally evaluate the usefulness of the NEPP regimen for further clinical use.
doi:10.3747/pdi.2010.00115
PMCID: PMC3525441  PMID: 22045100
Biocompatibility; CA125; CAPD; clinical trial; glucose; glucose degradation products; mesothelial regeneration; icodextrin; amino acids
2.  Proteinuria Triggers Renal Lymphangiogenesis Prior to the Development of Interstitial Fibrosis 
PLoS ONE  2012;7(11):e50209.
Proteinuria is an important cause of progressive tubulo-interstitial damage. Whether proteinuria could trigger a renal lymphangiogenic response has not been established. Moreover, the temporal relationship between development of fibrosis, inflammation and lymphangiogenesis in chronic progressive kidney disease is not clear yet. Therefore, we evaluated the time course of lymph vessel (LV) formation in relation to proteinuria and interstitial damage in a rat model of chronic unilateral adriamycin nephrosis. Proteinuria and kidneys were evaluated up to 30 weeks after induction of nephrosis. LVs were identified by podoplanin/VEGFR3 double staining. After 6 weeks proteinuria was well-established, without influx of interstitial macrophages and myofibroblasts, collagen deposition, osteopontin expression (tubular activation) or LV formation. At 12 weeks, a ∼3-fold increase in cortical LV density was found (p<0.001), gradually increasing over time. This corresponded with a significant increase in tubular osteopontin expression (p<0.01) and interstitial myofibroblast numbers (p<0.05), whereas collagen deposition and macrophage numbers were not yet increased. VEGF-C was mostly expressed by tubular cells rather than interstitial cells. Cultured tubular cells stimulated with FCS showed a dose-dependent increase in mRNA and protein expression of VEGF-C which was not observed by human albumin stimulation. We conclude that chronic proteinuria provoked lymphangiogenesis in temporal conjunction with tubular osteopontin expression and influx of myofibroblasts, that preceded interstitial fibrosis.
doi:10.1371/journal.pone.0050209
PMCID: PMC3506584  PMID: 23189189
3.  UMOD as a susceptibility gene for end-stage renal disease 
BMC Medical Genetics  2012;13:78.
Background
In recent genetic association studies, common variants including rs12917707 in the UMOD locus have shown strong evidence of association with eGFR, prevalent and incident chronic kidney disease and uromodulin urinary concentration in general population cohorts. The association of rs12917707 with end-stage renal disease (ESRD) in a recent case-control study was only nominally significant.
Methods
To investigate whether rs12917707 associates with ESRD, graft failure (GF) and urinary uromodulin levels in an independent cohort, we genotyped 1142 ESRD patients receiving a renal transplantation and 1184 kidney donors as controls. After transplantation, 1066 renal transplant recipients were followed up for GF. Urinary uromodulin concentration was measured at median [IQR] 4.2 [2.2-6.1] yrs after kidney transplantation.
Results
The rs12917707 minor allele showed association with lower risk of ESRD (OR 0.89 [0.76-1.03], p = 0.04) consistent in effect size and direction with the previous report (Böger et al, PLoS Genet 2011). Meta-analysis of these findings showed significant association of rs12917707 with ESRD (OR 0.91 [0.85-98], p = 0.008). In contrast, rs12917707 was not associated with incidence of GF. Urinary uromodulin concentration was lower in recipients-carriers of the donor rs12917707 minor allele as compared to non-carriers, again consistent with previous observations in general population cohorts.
Conclusions
Our study thus corroborates earlier evidence and independently confirms the association between UMOD and ESRD.
doi:10.1186/1471-2350-13-78
PMCID: PMC3495046  PMID: 22947327
UMOD; Uromodulin; Polymorphisms; SNP; End-stage renal disease; Kidney transplantation
4.  CUBN as a Novel Locus for End-Stage Renal Disease: Insights from Renal Transplantation 
PLoS ONE  2012;7(5):e36512.
Chronic kidney disease (CKD) is a complex disorder. As genome-wide association studies identified cubilin gene CUBN as a locus for albuminuria, and urinary protein loss is a risk factor for progressive CKD, we tested the hypothesis that common genetic variants in CUBN are associated with end-stage renal disease (ESRD) and proteinuria. First, a total of 1142 patients with ESRD, admitted for renal transplantation, and 1186 donors were genotyped for SNPs rs7918972 and rs1801239 (case-control study). The rs7918972 minor allele frequency (MAF) was higher in ESRD patients comparing to kidney donors, implicating an increased risk for ESRD (OR 1.39, p = 0.0004) in native kidneys. Second, after transplantation recipients were followed for 5.8 [3.8–9.2] years (longitudinal study) documenting ESRD in transplanted kidneys – graft failure (GF). During post-transplant follow-up 92 (9.6%) cases of death-censored GF occurred. Donor rs7918972 MAF, representing genotype of the transplanted kidney, was 16.3% in GF vs 10.7% in cases with functioning graft. Consistently, a multivariate Cox regression analysis showed that donor rs7918972 is a predictor of GF, although statistical significance was not reached (HR 1.53, p = 0.055). There was no association of recipient rs7918972 with GF. Rs1801239 was not associated with ESRD or GF. In line with an association with the outcome, donor rs7918972 was associated with elevated proteinuria levels cross-sectionally at 1 year after transplantation. Thus, we identified CUBN rs7918972 as a novel risk variant for renal function loss in two independent settings: ESRD in native kidneys and GF in transplanted kidneys.
doi:10.1371/journal.pone.0036512
PMCID: PMC3344899  PMID: 22574174

Results 1-4 (4)