PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  The cost-effectiveness of increasing alcohol taxes: a modelling study 
BMC Medicine  2008;6:36.
Background
Excessive alcohol use increases risks of chronic diseases such as coronary heart disease and several types of cancer, with associated losses of quality of life and life-years. Alcohol taxes can be considered as a public health instrument as they are known to be able to decrease alcohol consumption. In this paper, we estimate the cost-effectiveness of an alcohol tax increase for the entire Dutch population from a health-care perspective focusing on health benefits and health-care costs in alcohol users.
Methods
The chronic disease model of the National Institute for Public Health and the Environment was used to extrapolate from decreased alcohol consumption due to tax increases to effects on health-care costs, life-years gained and quality-adjusted life-years gained, A Dutch scenario in which tax increases for beer are planned, and a Swedish scenario representing one of the highest alcohol taxes in Europe, were compared with current practice in the Netherlands. To estimate cost-effectiveness ratios, yearly differences in model outcomes between intervention and current practice scenarios were discounted and added over the time horizon of 100 years to find net present values for incremental life-years gained, quality-adjusted life-years gained, and health-care costs.
Results
In the Swedish scenario, many more quality-adjusted life-years were gained than in the Dutch scenario, but both scenarios had almost equal incremental cost-effectiveness ratios: €5100 per quality-adjusted life-year and €5300 per quality-adjusted life-year, respectively.
Conclusion
Focusing on health-care costs and health consequences for drinkers, an alcohol tax increase is a cost-effective policy instrument.
doi:10.1186/1741-7015-6-36
PMCID: PMC2637894  PMID: 19040717
2.  Dynamic effects of smoking cessation on disease incidence, mortality and quality of life: The role of time since cessation 
Background
To support health policy makers in setting priorities, quantifying the potential effects of tobacco control on the burden of disease is useful. However, smoking is related to a variety of diseases and the dynamic effects of smoking cessation on the incidence of these diseases differ. Furthermore, many people who quit smoking relapse, most of them within a relatively short period.
Methods
In this paper, a method is presented for calculating the effects of smoking cessation interventions on disease incidence that allows to deal with relapse and the effect of time since quitting. A simulation model is described that links smoking to the incidence of 14 smoking related diseases. To demonstrate the model, health effects are estimated of two interventions in which part of current smokers in the Netherlands quits smoking.
To illustrate the advantages of the model its results are compared with those of two simpler versions of the model. In one version we assumed no relapse after quitting and equal incidence rates for all former smokers. In the second version, incidence rates depend on time since cessation, but we assumed still no relapse after quitting.
Results
Not taking into account time since smoking cessation on disease incidence rates results in biased estimates of the effects of interventions. The immediate public health effects are overestimated, since the health risk of quitters immediately drops to the mean level of all former smokers. However, the long-term public health effects are underestimated since after longer periods of time the effects of past smoking disappear and so surviving quitters start to resemble never smokers. On balance, total health gains of smoking cessation are underestimated if one does not account for the effect of time since cessation on disease incidence rates. Not taking into account relapse of quitters overestimates health gains substantially.
Conclusion
The results show that simulation models are sensitive to assumptions made in specifying the model. The model should be specified carefully in accordance with the questions it is supposed to answer. If the aim of the model is to estimate effects of smoking cessation interventions on mortality and morbidity, one should include relapse of quitters and dependency on time since cessation of incidence rates of smoking-related chronic diseases. A drawback of such models is that data requirements are extensive.
doi:10.1186/1478-7547-6-1
PMCID: PMC2267164  PMID: 18190684

Results 1-2 (2)