Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Motif-directed network component analysis for regulatory network inference 
BMC Bioinformatics  2008;9(Suppl 1):S21.
Network Component Analysis (NCA) has shown its effectiveness in discovering regulators and inferring transcription factor activities (TFAs) when both microarray data and ChIP-on-chip data are available. However, a NCA scheme is not applicable to many biological studies due to limited topology information available, such as lack of ChIP-on-chip data. We propose a new approach, motif-directed NCA (mNCA), to integrate motif information and gene expression data to infer regulatory networks.
We develop motif-directed NCA (mNCA) to incorporate motif information into NCA for regulatory network inference. While motif information is readily available from knowledge databases, it is a "noisy" source of network topology information consisting of many false positives. To overcome this problem, we develop a stability analysis procedure embedded in mNCA to resolve the inconsistency between motif information and gene expression data, and to enable the identification of stable TFAs. The mNCA approach has been applied to a time course microarray data set of muscle regeneration. The experimental results show that the inferred TFAs are not only numerically stable but also biologically relevant to muscle differentiation process. In particular, several inferred TFAs like those of MyoD, myogenin and YY1 are well supported by biological experiments.
A novel computational approach, mNCA, has been developed to integrate motif information and gene expression data for regulatory network reconstruction. Specifically, motif analysis is used to obtain initial network topology, and stability analysis is developed and applied with mNCA to extract stable TFAs. Experimental results on muscle regeneration microarray data have demonstrated that mNCA is a practical and reliable computational method for regulatory network inference and pathway discovery.
PMCID: PMC2259422  PMID: 18315853
2.  Sources of variability and effect of experimental approach on expression profiling data interpretation 
BMC Bioinformatics  2002;3:4.
We provide a systematic study of the sources of variability in expression profiling data using 56 RNAs isolated from human muscle biopsies (34 Affymetrix MuscleChip arrays), and 36 murine cell culture and tissue RNAs (42 Affymetrix U74Av2 arrays).
We studied muscle biopsies from 28 human subjects as well as murine myogenic cell cultures, muscle, and spleens. Human MuscleChip arrays (4,601 probe sets) and murine U74Av2 Affymetrix microarrays were used for expression profiling. RNAs were profiled both singly, and as mixed groups. Variables studied included tissue heterogeneity, cRNA probe production, patient diagnosis, and GeneChip hybridizations. We found that the greatest source of variability was often different regions of the same patient muscle biopsy, reflecting variation in cell type content even in a relatively homogeneous tissue such as muscle. Inter-patient variation was also very high (SNP noise). Experimental variation (RNA, cDNA, cRNA, or GeneChip) was minor. Pre-profile mixing of patient cRNA samples effectively normalized both intra- and inter-patient sources of variation, while retaining a high degree of specificity of the individual profiles (86% of statistically significant differences detected by absolute analysis; and 85% by a 4-pairwise comparison survival method).
Using unsupervised cluster analysis and correlation coefficients of 92 RNA samples on 76 oligonucleotide microarrays, we found that experimental error was not a significant source of unwanted variability in expression profiling experiments. Major sources of variability were from use of small tissue biopsies, particularly in humans where there is substantial inter-patient variability (SNP noise).
PMCID: PMC65691  PMID: 11936955

Results 1-2 (2)