Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Pseudoxanthoma elasticum: A review of 86 cases in China 
Pseudoxanthoma elasticum (PXE) is a type of rare hereditary disease that affects connective tissue. PXE is found around the world, and its epidemiology in China is still unclear. A database search revealed that 86 patients in total were reported in China from 1985 to 2013. The vast majority of these reports concern single, sporadic cases. This review summarizes the clinical characteristics of PXE and its treatment in China. The hope is to provide a reliable basis for studies on the incidence of PXE and for formulation of relevant policies in the future.
PMCID: PMC4214240  PMID: 25364647
Rare diseases; prevalence; clinical features; literature search
2.  Using hormetic strategies to improve ischemic preconditioning and postconditioning against stroke 
Both ischemic preconditioning (IPreC) and ischemic postconditioning (IPostC) trigger endogenous neuroprotective mechanisms in cerebral ischemia. IPreC is defined as a brief ischemia that protects against a subsequent severe ischemia, while IPostC refers to a series of brief cerebral blood vessel occlusions performed at reperfusion following an ischemic event. Hormesis describes a biphasic dose-response relationship in toxicology, where a low dose of toxicant stimulates and a high dose inhibits biological responses. In general, any minor stress will stimulate a biological system to generate an adaptive response; in most cases, if not all, such an adaptive response to a minor stress is beneficial to the biological system. Proponents of hormesis suggest that this effect is independent of any models, either in vivo or in vitro, from animal, plant, fungi, yeast, to bacteria, by any measurement of end points, survival ratio or time, growth, tissue repair, life span, cognition, learning and memory. In this review, we examine whether IPreC and IPostC are actually sub-forms of hormesis and whether quantitative hormetic strategies can be used to study IPreC and IPostC. By integrating the concepts of IPreC and IPostC with hormesis, we aim to broaden the avenues leading to clinical translation of IPreC and IPostC in stroke treatment.
PMCID: PMC3669735  PMID: 23750305
Ischemic postconditioning; preconditioning; stroke; hormesis
3.  Advances in research on and diagnosis and treatment of achondroplasia in China 
Achondroplasia is a rare autosomal dominant genetic disease. Research on achondroplasia in China, however, has received little emphasis. Around 80–90% of cases of neonatal achondroplasia result from mutations in fibroblast growth factor receptor 3 (FGFR3) according to polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Recently, genetic research on achondroplasia in China made a major breakthrough by revealing two novel mutations located on the FGFR3 gene, thus helping to complete the pathological molecular map of achondroplasia. There are still, however, unknown aspects of the diagnosis and treatment of achondroplasia. This review will summarize advances in research on and the clinical diagnosis and treatment of achondroplasia in China.
PMCID: PMC4204580  PMID: 25343101
Rare diseases; gene mutation; chondrodystrophia fetalis; chondrodystrophic dwarfism
5.  A systematic review of genetic skeletal disorders reported in Chinese biomedical journals between 1978 and 2012 
Little information is available on the prevalence, geographic distribution and mutation spectrum of genetic skeletal disorders (GSDs) in China. This study systematically reviewed GSDs as defined in “Nosology and Classification of genetic skeletal disorders (2010 version)” using Chinese biomedical literature published over the past 34 years from 1978 to 2012. In total, 16,099 GSDs have been reported. The most frequently reported disorders were Marfan syndrome, osteogenesis imperfecta, fibrous dysplasia, mucopolysaccharidosis, multiple cartilaginous exostoses, neurofibromatosis type 1 (NF1), osteopetrosis, achondroplasia, enchondromatosis (Ollier), and osteopoikilosis, accounting for 76.5% (12,312 cases) of the total cases. Five groups (group 8, 12, 14, 18, 21) defined by “Nosology and Classification of genetic skeletal disorders” have not been reported in the Chinese biomedical literature. Gene mutation testing was performed in only a minor portion of the 16,099 cases of GSDs (187 cases, 1.16%). In total, 37 genes for 41 different GSDs were reported in Chinese biomedical literature, including 43 novel mutations. This review revealed a significant imbalance in rare disease identification in terms of geographic regions and hospital levels, suggesting the need to create a national multi-level network to meet the specific challenge of care for rare diseases in China.
PMCID: PMC3492206  PMID: 22913777
Rare diseases; Genetic skeletal diseases; China; Bibliographic study
6.  Limited Therapeutic Time Windows of Mild-to-Moderate Hypothermia in a Focal Ischemia Model in Rat 
Stroke Research and Treatment  2011;2011:131834.
Although many studies have shown the great potential of induced hypothermia in stroke treatment, we recognize that there are limitations to the protective effects of hypothermia even in the laboratory. Here, we review our experiments on the protective effects of mild-to-moderate hypothermia in rats. Focal ischemia was induced by bilateral common carotid artery (CCA) occlusion for 1 to 2 hours combined with permanent or transient middle cerebral artery (MCA) occlusion. We compared the effects of mild (33°C) and moderate (30°C) hypothermia, evaluated therapeutic time windows, and studied the underlying mechanisms. On review, our findings revealed that the protective effects of induced mild hypothermia (33°C) were limited, and the therapeutic time window of even moderate hypothermia (30°C) was very short in our specific models, although this limitation might be due to the relatively brief periods of hypothermia used. In addition, we found that hypothermia reduced brain injury by preserving Akt activity, PTEN phosphorylation and εPKC activity, while inhibiting ROS production, and δPKC activity.
PMCID: PMC3159378  PMID: 21876846

Results 1-6 (6)