PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Vaccinia virus leads to ATG12–ATG3 conjugation and deficiency in autophagosome formation 
Autophagy  2011;7(12):1434-1447.
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.
doi:10.4161/auto.7.12.17793
PMCID: PMC3327614  PMID: 22024753
ATG12; ATG3; autophagy; LC3 lipidation; vaccinia virus
2.  Golgi Apparatus-Localized Synaptotagmin 2 Is Required for Unconventional Secretion in Arabidopsis 
PLoS ONE  2011;6(11):e26477.
Background
Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYGR) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYGR in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear.
Methodology/Principal Findings
We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYGR caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYGR, which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYGR-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYGR-GFP was truncated at carboxyl terminus of HYGR shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYGR-GFP,resulting in HYGR-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYGR-GFP trafficking and secretion.
Conclusion/Significance
These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYGR-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in plant cells.
doi:10.1371/journal.pone.0026477
PMCID: PMC3225361  PMID: 22140429
3.  Arabidopsis R-SNARE Proteins VAMP721 and VAMP722 Are Required for Cell Plate Formation 
PLoS ONE  2011;6(10):e26129.
Background
Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited.
Methodology/Principal Findings
We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins.
Conclusion/Significance
These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.
doi:10.1371/journal.pone.0026129
PMCID: PMC3191180  PMID: 22022536
4.  An automated and simple method for brain MR image extraction 
Background
The extraction of brain tissue from magnetic resonance head images, is an important image processing step for the analyses of neuroimage data. The authors have developed an automated and simple brain extraction method using an improved geometric active contour model.
Methods
The method uses an improved geometric active contour model which can not only solve the boundary leakage problem but also is less sensitive to intensity inhomogeneity. The method defines the initial function as a binary level set function to improve computational efficiency. The method is applied to both our data and Internet brain MR data provided by the Internet Brain Segmentation Repository.
Results
The results obtained from our method are compared with manual segmentation results using multiple indices. In addition, the method is compared to two popular methods, Brain extraction tool and Model-based Level Set.
Conclusions
The proposed method can provide automated and accurate brain extraction result with high efficiency.
doi:10.1186/1475-925X-10-81
PMCID: PMC3180437  PMID: 21910906

Results 1-4 (4)