Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  A Cell-based Computational Modeling Approach for Developing Site-Directed Molecular Probes 
PLoS Computational Biology  2012;8(2):e1002378.
Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration.
Author Summary
We have developed an integrative, cell-based modeling approach to facilitate the design and discovery of chemical agents directed to specific sites of action within a living organism. Here, a computational, multiscale transport model of the lung was adapted to enable virtual screening of small molecules targeting the epithelial cells of the upper airways. In turn, the transport behaviors of selected candidate probes were evaluated to establish their degree of retention at a site of absorption, using computational simulations as well as two in vitro cell-based assay systems. Lastly, bioimaging experiments were performed to examine candidate molecules' distribution in the lungs of mice after local and systemic administration. Based on computational simulations, the higher mitochondrial density per unit absorption surface area is the key parameter determining the higher retention of small molecule hydrophilic cations in the upper airways, relative to lipophilic weak bases, specifically after intratracheal administration.
PMCID: PMC3285574  PMID: 22383866
2.  Computational Inference of Neural Information Flow Networks 
PLoS Computational Biology  2006;2(11):e161.
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
One of the challenges in the area of brain research is to decipher networks describing the flow of information among communicating neurons in the form of electrophysiological signals. These networks are thought to be responsible for perceiving and learning about the environment, as well as producing behavior. Monitoring these networks is limited by the number of electrodes that can be placed in the brain of an awake animal, while inferring and reasoning about these networks is limited by the availability of appropriate computational tools. Here, Smith and Yu and colleagues begin to address these issues by implanting microelectrode arrays in the auditory pathway of freely moving songbirds and by analyzing the data using new computational tools they have designed for deciphering networks. The authors find that a dynamic Bayesian network algorithm they developed to decipher gene regulatory networks from gene expression data effectively infers putative information flow networks in the brain from microelectrode array data. The networks they infer conform to known anatomy and other biological properties of the auditory system and offer new insight into how the auditory system processes natural and synthetic sound. The authors believe that their results represent the first validated study of the inference of information flow networks in the brain.
PMCID: PMC1664702  PMID: 17121460

Results 1-2 (2)