Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
more »
Year of Publication
Document Types
author:("Yu, ruoqiang")
1.  Simultaneously Extracting Multiple Parameters via Fitting One Single Autocorrelation Function Curve in Diffuse Correlation Spectroscopy 
Near-infrared diffuse correlation spectroscopy (DCS) has recently been employed for noninvasive acquisition of blood flow information in deep tissues. Based on the established correlation diffusion equation, the light intensity autocorrelation function detected by DCS is determined by a blood flow index αDB, tissue absorption coefficient μa, reduced scattering coefficient μs’, and a coherence factor β. The present study is designed to investigate the possibility of extracting multiple parameters such as μa, μs’, β, and αDB through fitting one single autocorrelation function curve and evaluate the performance of different fitting methods. For this purpose, computer simulations, tissue-like phantom experiments and in-vivo tissue measurements were utilized. The results suggest that it is impractical to simultaneously fit αDB and μa or αDB and μs’ from one single autocorrelation function curve due to the large crosstalk between these paired parameters. However, simultaneously fitting β and αDB is feasible and generates more accurate estimation with smaller standard deviation compared to the conventional two-step fitting method (i.e., first calculating β and then fitting αDB). The outcomes from this study provide a crucial guidance for DCS data analysis.
PMCID: PMC4337031  PMID: 23193446
Near-infrared spectroscopy; diffuse correlation spectroscopy; blood flow; noise model; autocorrelation function
3.  Tumor Vascular Microenvironment Determines Responsiveness to Photodynamic Therapy 
Cancer Research  2012;72(8):2079-2088.
The efficacy of photodynamic therapy (PDT) depends upon the delivery of both photosensitizing drug and oxygen. In this study, we hypothesized that local vascular microenvironment is a determinant of tumor response to PDT. Tumor vascularization and its basement membrane (collagen) were studied as a function of supplementation with basement membrane matrix (Matrigel) at the time of tumor cell inoculation. Effects on vascular composition with consequences to tumor hypoxia, photosensitizer uptake and PDT response were measured. Matrigel-supplemented tumors developed more normalized vasculature, composed of smaller and more uniformly-spaced blood vessels than their unsupplemented counterparts, but these changes did not affect tumor oxygenation or PDT-mediated direct cytotoxicity. However, PDT-induced vascular damage increased in Matrigel-supplemented tumors, following an affinity of the photosensitizer Photofrin for collagen-containing vascular basement membrane coupled with increased collagen content in these tumors. The more highly-collagenated tumors demonstrated more vascular congestion and ischemia after PDT, along with a higher probability of curative outcome that was collagen dependent. In the presence of photosensitizer-collagen localization, PDT effects on collagen were evidenced by a decrease in its association with vessels. Together, our findings demonstrate that photosensitizer localization to collagen increases vascular damage and improves treatment efficacy in tumors with greater collagen content. The vascular basement membrane is thus identified to be a determinant of therapeutic outcome in PDT of tumors.
PMCID: PMC3328659  PMID: 22374982
collagen; photodynamic therapy; microenvironment; normalization; vasculature
4.  Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement 
Journal of Biomedical Optics  2012;17(1):010502.
A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10−5) and real-tissue (R2=0.77, p<10−5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.
PMCID: PMC4019367  PMID: 22352631
noncontact; diffuse; correlation; spectroscopy; deep tissue; blood flow
5.  Comparative Analysis of Methods for Identifying Recurrent Copy Number Alterations in Cancer 
PLoS ONE  2012;7(12):e52516.
Recurrent copy number alterations (CNAs) play an important role in cancer genesis. While a number of computational methods have been proposed for identifying such CNAs, their relative merits remain largely unknown in practice since very few efforts have been focused on comparative analysis of the methods. To facilitate studies of recurrent CNA identification in cancer genome, it is imperative to conduct a comprehensive comparison of performance and limitations among existing methods. In this paper, six representative methods proposed in the latest six years are compared. These include one-stage and two-stage approaches, working with raw intensity ratio data and discretized data respectively. They are based on various techniques such as kernel regression, correlation matrix diagonal segmentation, semi-parametric permutation and cyclic permutation schemes. We explore multiple criteria including type I error rate, detection power, Receiver Operating Characteristics (ROC) curve and the area under curve (AUC), and computational complexity, to evaluate performance of the methods under multiple simulation scenarios. We also characterize their abilities on applications to two real datasets obtained from cancers with lung adenocarcinoma and glioblastoma. This comparison study reveals general characteristics of the existing methods for identifying recurrent CNAs, and further provides new insights into their strengths and weaknesses. It is believed helpful to accelerate the development of novel and improved methods.
PMCID: PMC3527554  PMID: 23285074
6.  Noninvasive optical characterization of muscle blood flow, oxygenation, and metabolism in women with fibromyalgia 
Arthritis Research & Therapy  2012;14(6):R236.
Women with fibromyalgia (FM) have symptoms of increased muscular fatigue and reduced exercise tolerance, which may be associated with alterations in muscle microcirculation and oxygen metabolism. This study used near-infrared diffuse optical spectroscopies to noninvasively evaluate muscle blood flow, blood oxygenation and oxygen metabolism during leg fatiguing exercise and during arm arterial cuff occlusion in post-menopausal women with and without FM.
Fourteen women with FM and twenty-three well-matched healthy controls participated in this study. For the fatiguing exercise protocol, the subject was instructed to perform 6 sets of 12 isometric contractions of knee extensor muscles with intensity steadily increasing from 20 to 70% maximal voluntary isometric contraction (MVIC). For the cuff occlusion protocol, forearm arterial blood flow was occluded via a tourniquet on the upper arm for 3 minutes. Leg or arm muscle hemodynamics, including relative blood flow (rBF), oxy- and deoxy-hemoglobin concentration ([HbO2] and [Hb]), total hemoglobin concentration (THC) and blood oxygen saturation (StO2), were continuously monitored throughout protocols using a custom-built hybrid diffuse optical instrument that combined a commercial near-infrared oximeter for tissue oxygenation measurements and a custom-designed diffuse correlation spectroscopy (DCS) flowmeter for tissue blood flow measurements. Relative oxygen extraction fraction (rOEF) and oxygen consumption rate (rVO2) were calculated from the measured blood flow and oxygenation data. Post-manipulation (fatiguing exercise or cuff occlusion) recovery in muscle hemodynamics was characterized by the recovery half-time, a time interval from the end of manipulation to the time that tissue hemodynamics reached a half-maximal value.
Subjects with FM had similar hemodynamic and metabolic response/recovery patterns as healthy controls during exercise and during arterial occlusion. However, tissue rOEF during exercise in subjects with FM was significantly lower than in healthy controls, and the half-times of oxygenation recovery (Δ[HbO2] and Δ[Hb]) were significantly longer following fatiguing exercise and cuff occlusion.
Our results suggest an alteration of muscle oxygen utilization in the FM population. This study demonstrates the potential of using combined diffuse optical spectroscopies (i.e., NIRS/DCS) to comprehensively evaluate tissue oxygen and flow kinetics in skeletal muscle.
PMCID: PMC3674608  PMID: 23116302
7.  Genome-wide identification of significant aberrations in cancer genome 
BMC Genomics  2012;13:342.
Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme.
We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies.
Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open–source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at
PMCID: PMC3428679  PMID: 22839576
8.  Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery 
Biomedical Optics Express  2012;3(2):259-272.
This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements.
PMCID: PMC3269843  PMID: 22312579
(170.0170) Medical optics and biotechnology; (170.3660) Light propagation in tissues; (170.3880) Medical and biological imaging; (170.6480) Spectroscopy, speckle

Results 1-8 (8)