PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Yu, guoyang")
1.  BACOM: in silico detection of genomic deletion types and correction of normal cell contamination in copy number data 
Bioinformatics  2011;27(11):1473-1480.
Motivation: Identification of somatic DNA copy number alterations (CNAs) and significant consensus events (SCEs) in cancer genomes is a main task in discovering potential cancer-driving genes such as oncogenes and tumor suppressors. The recent development of SNP array technology has facilitated studies on copy number changes at a genome-wide scale with high resolution. However, existing copy number analysis methods are oblivious to normal cell contamination and cannot distinguish between contributions of cancerous and normal cells to the measured copy number signals. This contamination could significantly confound downstream analysis of CNAs and affect the power to detect SCEs in clinical samples.
Results: We report here a statistically principled in silico approach, Bayesian Analysis of COpy number Mixtures (BACOM), to accurately estimate genomic deletion type and normal tissue contamination, and accordingly recover the true copy number profile in cancer cells. We tested the proposed method on two simulated datasets, two prostate cancer datasets and The Cancer Genome Atlas high-grade ovarian dataset, and obtained very promising results supported by the ground truth and biological plausibility. Moreover, based on a large number of comparative simulation studies, the proposed method gives significantly improved power to detect SCEs after in silico correction of normal tissue contamination. We develop a cross-platform open-source Java application that implements the whole pipeline of copy number analysis of heterogeneous cancer tissues including relevant processing steps. We also provide an R interface, bacomR, for running BACOM within the R environment, making it straightforward to include in existing data pipelines.
Availability: The cross-platform, stand-alone Java application, BACOM, the R interface, bacomR, all source code and the simulation data used in this article are freely available at authors' web site: http://www.cbil.ece.vt.edu/software.htm.
Contact: yuewang@vt.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr183
PMCID: PMC3102226  PMID: 21498400
2.  PUGSVM: a caBIGTM analytical tool for multiclass gene selection and predictive classification 
Bioinformatics  2010;27(5):736-738.
Summary: Phenotypic Up-regulated Gene Support Vector Machine (PUGSVM) is a cancer Biomedical Informatics Grid (caBIG™) analytical tool for multiclass gene selection and classification. PUGSVM addresses the problem of imbalanced class separability, small sample size and high gene space dimensionality, where multiclass gene markers are defined by the union of one-versus-everyone phenotypic upregulated genes, and used by a well-matched one-versus-rest support vector machine. PUGSVM provides a simple yet more accurate strategy to identify statistically reproducible mechanistic marker genes for characterization of heterogeneous diseases.
Availability: http://www.cbil.ece.vt.edu/caBIG-PUGSVM.htm.
Contact: yuewang@vt.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq721
PMCID: PMC3042183  PMID: 21186245

Results 1-2 (2)