PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Human CHN1 mutations hyperactivate α2-chimaerin and cause Duane’s retraction syndrome 
Science (New York, N.Y.)  2008;321(5890):839-843.
The RacGAP molecule α2-chimaerin is implicated in neuronal signaling pathways required for precise guidance of developing corticospinal axons. We now demonstrate that a variant of Duane’s retraction syndrome, a congenital eye movement disorder in which affected individuals show aberrant development of axon projections to the extraocular muscles, can result from gain-of-function heterozygous missense mutations in CHN1 that increase α2-chimaerin RacGAP activity in vitro. A subset of mutations enhances α2-chimaerin membrane translocation and/or α2-chimaerin’s previously unrecognized ability to form a complex with itself. In ovo expression of mutant CHN1 alters the development of ocular motor axons. These data demonstrate that human CHN1 mutations can hyperactivate α2-chimaerin and result in aberrant cranial motor neuron development.
doi:10.1126/science.1156121
PMCID: PMC2593867  PMID: 18653847
2.  Three novel mutations in KIF21A highlight the importance of the third coiled-coil stalk domain in the etiology of CFEOM1 
BMC Genetics  2007;8:26.
Background
Congenital fibrosis of the extraocular muscles types 1 and 3 (CFEOM1/CFEOM3) are autosomal dominant strabismus disorders that appear to result from maldevelopment of ocular nuclei and nerves. We previously reported that most individuals with CFEOM1 and rare individuals with CFEOM3 harbor heterozygous mutations in KIF21A. KIF21A encodes a kinesin motor involved in anterograde axonal transport, and the familial and de novo mutations reported to date predictably alter one of only a few KIF21A amino acids – three within the third coiled-coil region of the stalk and one in the distal motor domain, suggesting they result in altered KIF21A function. To further define the spectrum of KIF21A mutations in CFEOM we have now identified all CFEOM probands newly enrolled in our study and determined if they harbor mutations in KIF21A.
Results
Sixteen CFEOM1 and 29 CFEOM3 probands were studied. Three previously unreported de novo KIF21A mutations were identified in three CFEOM1 probands, all located in the same coiled-coil region of the stalk that contains all but one of the previously reported mutations. Eight additional CFEOM1 probands harbored three of the mutations previously reported in KIF21A; seven had one of the two most common mutations, while one harbored the mutation in the distal motor domain. No mutation was detected in 5 CFEOM1 or any CFEOM3 probands.
Conclusion
Analysis of sixteen CFEOM1 probands revealed three novel KIF21A mutations and confirmed three reported mutations, bringing the total number of reported KIF21A mutations in CFEOM1 to 11 mutations among 70 mutation positive probands. All three new mutations alter amino acids in heptad repeats within the third coiled-coil region of the KIF21A stalk, further highlighting the importance of alterations in this domain in the etiology of CFEOM1.
doi:10.1186/1471-2156-8-26
PMCID: PMC1888713  PMID: 17511870

Results 1-2 (2)