Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)
Year of Publication
Document Types
author:("Yin, yanbian")
1.  AST: An Automated Sequence-Sampling Method for Improving the Taxonomic Diversity of Gene Phylogenetic Trees 
PLoS ONE  2014;9(6):e98844.
A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at
PMCID: PMC4044049  PMID: 24892935
2.  Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions 
Nucleic Acids Research  2013;41(11):5594-5603.
The circular chromosome of Escherichia coli has been suggested to fold into a collection of sequentially consecutive domains, genes in each of which tend to be co-expressed. It has also been suggested that such domains, forming a partition of the genome, are dynamic with respect to the physiological conditions. However, little is known about which DNA segments of the E. coli genome form these domains and what determines the boundaries of these domain segments. We present a computational model here to partition the circular genome into consecutive segments, theoretically suggestive of the physically folded supercoiled domains, along with a method for predicting such domains under specified conditions. Our model is based on a hypothesis that the genome of E. coli is partitioned into a set of folding domains so that the total number of unfoldings of these domains in the folded chromosome is minimized, where a domain is unfolded when a biological pathway, consisting of genes encoded in this DNA segment, is being activated transcriptionally. Based on this hypothesis, we have predicted seven distinct sets of such domains along the E. coli genome for seven physiological conditions, namely exponential growth, stationary growth, anaerobiosis, heat shock, oxidative stress, nitrogen limitation and SOS responses. These predicted folding domains are highly stable statistically and are generally consistent with the experimental data of DNA binding sites of the nucleoid-associated proteins that assist the folding of these domains, as well as genome-scale protein occupancy profiles, hence supporting our proposed model. Our study established for the first time a strong link between a folded E. coli chromosomal structure and the encoded biological pathways and their activation frequencies.
PMCID: PMC3675479  PMID: 23599001
3.  Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass 
Journal of Bacteriology  2012;194(15):4015-4028.
Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.
PMCID: PMC3416521  PMID: 22636774
4.  Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis 
BMC Plant Biology  2012;12:138.
Identification of the novel genes relevant to plant cell-wall (PCW) synthesis represents a highly important and challenging problem. Although substantial efforts have been invested into studying this problem, the vast majority of the PCW related genes remain unknown.
Here we present a computational study focused on identification of the novel PCW genes in Arabidopsis based on the co-expression analyses of transcriptomic data collected under 351 conditions, using a bi-clustering technique. Our analysis identified 217 highly co-expressed gene clusters (modules) under some experimental conditions, each containing at least one gene annotated as PCW related according to the Purdue Cell Wall Gene Families database. These co-expression modules cover 349 known/annotated PCW genes and 2,438 new candidates. For each candidate gene, we annotated the specific PCW synthesis stages in which it is involved and predicted the detailed function. In addition, for the co-expressed genes in each module, we predicted and analyzed their cis regulatory motifs in the promoters using our motif discovery pipeline, providing strong evidence that the genes in each co-expression module are transcriptionally co-regulated. From the all co-expression modules, we infer that 108 modules are related to four major PCW synthesis components, using three complementary methods.
We believe our approach and data presented here will be useful for further identification and characterization of PCW genes. All the predicted PCW genes, co-expression modules, motifs and their annotations are available at a web-based database:
PMCID: PMC3463447  PMID: 22877077
Plant cell wall; Arabidopsis; Co-expression network analysis; Bi-clustering; Cis regulatory motifs
5.  The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces 
Nucleic Acids Research  2012;40(17):8210-8218.
The majority of bacterial genes are located on the leading strand, and the percentage of such genes has a large variation across different bacteria. Although some explanations have been proposed, these are at most partial explanations as they cover only small percentages of the genes and do not even consider the ones biased toward the lagging strand. We have carried out a computational study on 725 bacterial genomes, aiming to elucidate other factors that may have influenced the strand location of genes in a bacterium. Our analyses suggest that (i) genes of some functional categories such as ribosome have higher preferences to be on the leading strands; (ii) genes of some functional categories such as transcription factor have higher preferences on the lagging strands; (iii) there is a balancing force that tends to keep genes from all moving to the leading and more efficient strand and (iv) the percentage of leading-strand genes in an bacterium can be accurately explained based on the numbers of genes in the functional categories outlined in (i) and (ii), genome size and gene density, indicating that these numbers implicitly contain the information about the percentage of genes on the leading versus lagging strand in a genome.
PMCID: PMC3458553  PMID: 22735706
6.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation 
Nucleic Acids Research  2012;40(Web Server issue):W445-W451.
Carbohydrate-active enzymes (CAZymes) are very important to the biotech industry, particularly the emerging biofuel industry because CAZymes are responsible for the synthesis, degradation and modification of all the carbohydrates on Earth. We have developed a web resource, dbCAN (, to provide a capability for automated CAZyme signature domain-based annotation for any given protein data set (e.g. proteins from a newly sequenced genome) submitted to our server. To accomplish this, we have explicitly defined a signature domain for every CAZyme family, derived based on the CDD (conserved domain database) search and literature curation. We have also constructed a hidden Markov model to represent the signature domain of each CAZyme family. These CAZyme family-specific HMMs are our key contribution and the foundation for the automated CAZyme annotation.
PMCID: PMC3394287  PMID: 22645317
7.  Genomic Arrangement of Regulons in Bacterial Genomes 
PLoS ONE  2012;7(1):e29496.
Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles.
PMCID: PMC3250446  PMID: 22235300
8.  Evolution of Plant Nucleotide-Sugar Interconversion Enzymes 
PLoS ONE  2011;6(11):e27995.
Nucleotide-diphospho-sugars (NDP-sugars) are the building blocks of diverse polysaccharides and glycoconjugates in all organisms. In plants, 11 families of NDP-sugar interconversion enzymes (NSEs) have been identified, each of which interconverts one NDP-sugar to another. While the functions of these enzyme families have been characterized in various plants, very little is known about their evolution and origin. Our phylogenetic analyses indicate that all the 11 plant NSE families are distantly related and most of them originated from different progenitor genes, which have already diverged in ancient prokaryotes. For instance, all NSE families are found in the lower land plant mosses and most of them are also found in aquatic algae, implicating that they have already evolved to be capable of synthesizing all the 11 different NDP-sugars. Particularly interesting is that the evolution of RHM (UDP-L-rhamnose synthase) manifests the fusion of genes of three enzymatic activities in early eukaryotes in a rather intriguing manner. The plant NRS/ER (nucleotide-rhamnose synthase/epimerase-reductase), on the other hand, evolved much later from the ancient plant RHMs through losing the N-terminal domain. Based on these findings, an evolutionary model is proposed to explain the origin and evolution of different NSE families. For instance, the UGlcAE (UDP-D-glucuronic acid 4-epimerase) family is suggested to have evolved from some chlamydial bacteria. Our data also show considerably higher sequence diversity among NSE-like genes in modern prokaryotes, consistent with the higher sugar diversity found in prokaryotes. All the NSE families are widely found in plants and algae containing carbohydrate-rich cell walls, while sporadically found in animals, fungi and other eukaryotes, which do not have or have cell walls with distinct compositions. Results of this study were shown to be highly useful for identifying unknown genes for further experimental characterization to determine their functions in the synthesis of diverse glycosylated molecules.
PMCID: PMC3220709  PMID: 22125650
9.  Integration of sequence-similarity and functional association information can overcome intrinsic problems in orthology mapping across bacterial genomes 
Nucleic Acids Research  2011;39(22):e150.
Existing methods for orthologous gene mapping suffer from two general problems: (i) they are computationally too slow and their results are difficult to interpret for automated large-scale applications when based on phylogenetic analyses; or (ii) they are too prone to making mistakes in dealing with complex situations involving horizontal gene transfers and gene fusion due to the lack of a sound basis when based on sequence similarity information. We present a novel algorithm, Global Optimization Strategy (GOST), for orthologous gene mapping through combining sequence similarity and contextual (working partners) information, using a combinatorial optimization framework. Genome-scale applications of GOST show substantial improvements over the predictions by three popular sequence similarity-based orthology mapping programs. Our analysis indicates that our algorithm overcomes the intrinsic issues faced by sequence similarity-based methods, when orthology mapping involves gene fusions and horizontal gene transfers. Our program runs as efficiently as the most efficient sequence similarity-based algorithm in the public domain. GOST is freely downloadable at
PMCID: PMC3239196  PMID: 21965536
10.  Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725 
Nucleic Acids Research  2011;39(8):3240-3254.
Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments.
PMCID: PMC3082886  PMID: 21227922
11.  GolgiP: prediction of Golgi-resident proteins in plants 
Bioinformatics  2010;26(19):2464-2465.
Summary: We present a novel Golgi-prediction server, GolgiP, for computational prediction of both membrane- and non-membrane-associated Golgi-resident proteins in plants. We have employed a support vector machine-based classification method for the prediction of such Golgi proteins, based on three types of information, dipeptide composition, transmembrane domain(s) (TMDs) and functional domain(s) of a protein, where the functional domain information is generated through searching against the Conserved Domains Database, and the TMD information includes the number of TMDs, the length of TMD and the number of TMDs at the N-terminus of a protein. Using GolgiP, we have made genome-scale predictions of Golgi-resident proteins in 18 plant genomes, and have made the preliminary analysis of the predicted data.
Availability: The GolgiP web service is publically available at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2944200  PMID: 20733061
12.  Genome Sequence of the Anaerobic, Thermophilic, and Cellulolytic Bacterium “Anaerocellum thermophilum” DSM 6725▿  
Journal of Bacteriology  2009;191(11):3760-3761.
“Anaerocellum thermophilum” DSM 6725 is a strictly anaerobic bacterium that grows optimally at 75°C. It uses a variety of polysaccharides, including crystalline cellulose and untreated plant biomass, and has potential utility in biomass conversion. Here we report its complete genome sequence of 2.97 Mb, which is contained within one chromosome and two plasmids (of 8.3 and 3.6 kb). The genome encodes a broad set of cellulolytic enzymes, transporters, and pathways for sugar utilization and compared to those of other saccharolytic, anaerobic thermophiles is most similar to that of Caldicellulosiruptor saccharolyticus DSM 8903.
PMCID: PMC2681903  PMID: 19346307
13.  The cellulose synthase superfamily in fully sequenced plants and algae 
BMC Plant Biology  2009;9:99.
The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses.
A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome.
Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.
PMCID: PMC3091534  PMID: 19646250

Results 1-13 (13)