Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
Year of Publication
Document Types
Polypropylene fumarate (PPF) scaffolds fabricated by rapid prototyping technique were surface modified by solution deposition of electrically conductive polypyrrole coatings with or without hydroxyapatite. Scaffolds were electrically conductive with resistivity as low as 2Ω. Scaffold characterization by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis shows both polypyrrole and hydroxyapatite are present. Cell viability, attachment, proliferation, and differentiation were analyzed using human fetal osteoblast cells. These studies show that surface modification using hydroxyapatite improved cell attachment and proliferation of osteoblasts onto the PPF scaffolds. Alkaline phosphatase activity as a marker for osteogenic differentiation of cell to mature osteoblasts was analyzed. Our data reveal that osteoblasts maintained their phenotype on PPF scaffolds with and without coatings. Thus, these scaffolds could be appropriate candidates for our future in vivo studies.
PMCID: PMC4026939  PMID: 22051167
2.  Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycaprolactone fumarate nerve conduits 
Acta biomaterialia  2011;8(2):511-518.
Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator. Controlled release of such stimulators may enhance and guide the vascularization process, and when applied in a nerve conduit may play a role in nerve regeneration. We report the fabrication and in vitro characterization of VEGF encapsulating poly-lactic-co-glycolic acid (PLGA) microspheres and the in vivo application of nerve conduits supplemented with VEGF-containing microspheres. PLGA microspheres containing VEGF were prepared by the double emulsion-solvent evaporation technique. This yielded 83.16% of the microspheres with a diameter < 53 µm. VEGF content measured by ELISA indicated 93.79 ±10.64% encapsulation efficiency. Release kinetics were characterized by an initial burst release of 67.6±8.25% within the first 24 hours, followed by consistent release of approximately 0.34% per day for 4 weeks. Bioactivity of the released VEGF was tested by human umbilical vein endothelial cell (HUVEC) proliferation assay. VEGF released at all time points enhanced HUVEC proliferation confirming that VEGF retained its bioactivity through the 4-week time period. When the microsphere delivery system was placed in a biosynthetic nerve scaffold, robust nerve regeneration was observed. This study established a novel system for controlled release of growth factors and enables in vivo studies of nerve conduits conditioned with this system.
PMCID: PMC3972821  PMID: 22019759
microsphere; poly-lactic co-glycolic acid; vascular endothelial growth factor; bioactivity; biodegradation; nerve guide
3.  Osteoblast Growth and Bone Healing Response to Three Dimensional Poly(ε-caprolactone fumarate) Scaffolds 
Poly(ε-caprolactone fumarate) (PCLF) scaffold formulations were assessed as a delivery system of recombinant human bone morphogenetic protein (rhBMP-2) for bone tissue engineering. The formulations included PCLF with combinations of poly(vinyl alcohol) (PVA) and hydroxyapatite (HA). The assessments included in vitro and in vivo assays. In vitro assays validated cell attachment using a pre-osteoblast cell line (MC3T3-E1). Additionally, in vitro release profiles of rhBMP-2 from PCLF scaffolds were determined up to 21 days. Data suggested PCLF incorporated with PVA and HA accelerated rhBMP-2 release and the released protein was bioactive. For the in vivo study, a critical sized defect (CSD) model in a rabbit calvaria was used to test PCLF scaffolds. At 6 weeks post-implantation, significantly more bone formation was measured in PCLF scaffolds containing rhBMP-2 than in scaffolds without rhBMP-2. In conclusion, we demonstrated PCLF delivered biologically active rhBMP-2, promoted bone healing in a CSD and has potential as a bone tissue engineering scaffold.
PMCID: PMC3213277  PMID: 21744511
poly(ε-caprolactone fumarate); three-dimensional scaffold; rabbit calvarial critical sized defect; rhBMP-2; bone tissue engineering
4.  Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties 
Acta biomaterialia  2011;8(1):133-143.
Polycaprolactone fumarate (PCLF) is a cross-linkable derivate of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of the previously studied PCLF (PCLFDEG) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLFPPD) or glycerol (PCLFGLY). PCLFPPD is linear and resembles the previously studied PCLFDEG, while PCLFGLY is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLFPPD has material properties similar to the previously studied PCLFDEG. The branched PCLFGLY exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate FDA approvable sterilization method is addressed. This study shows that autoclave sterilization on PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties.
PMCID: PMC3226927  PMID: 21911087
Polycaprolactone fumarate; polyester; sterilization; nerve regeneration
5.  Induction of Fracture Repair by Mesenchymal Cells Derived from Human Embryonic Stem Cells or Bone Marrow 
Development of novel therapeutic approaches to repair fracture non-unions remains a critical clinical necessity. We evaluated the capacity of human embryonic stem cell (hESC)-derived mesenchymal stem/stromal cells (MSCs) to induce healing in a fracture non-union model in rats. In addition, we placed these findings in the context of parallel studies using human bone marrow MSCs (hBM-MSCs) or a no cell control group (n = 10 to 12 per group). Preliminary studies demonstrated that both for hESC-derived MSCs and hBM-MSCs, optimal induction of fracture healing required in vitro osteogenic differentiation of these cells. Based on biomechanical testing of fractured femurs, maximum torque and stiffness were significantly greater in the hBM-MSC as compared to the control group that received no cells; values for these parameters in the hESC-derived MSC group were intermediate between the hBM-MSC and control groups, and not significantly different from the control group. However, some evidence of fracture healing was evident by X-ray in the hESC-derived MSC group. Our results thus indicate that while hESC-derived MSCs may have potential to induce fracture healing in non-unions, hBM-MSCs function more efficiently in this process. Additional studies are needed to further modify hESCs to achieve optimal fracture healing by these cells.
PMCID: PMC3179810  PMID: 21674605
embryonic stem cells; mesenchymal stem/stromal cells; osteogenic; bone repair; fracture non-union
6.  Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair 
Biomaterials  2011;32(32):8077-8086.
The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P < 0.01) and OPF+ (P < 0.05) groups, compared to that of the PLGA group. OPF+ polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P < 0.05). Volume of scar and cyst rostral and caudal to the implanted scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies.
PMCID: PMC3163757  PMID: 21803415
OPF; PLGA; PCLF; axon regeneration; spinal cord injury; Schwann cell
7.  COL1 C-propeptide Cleavage Site Mutations Cause High Bone Mass Osteogenesis Imperfecta 
Human mutation  2011;32(6):598-609.
Osteogenesis imperfecta (OI) is most often caused by mutations in the type I procollagen genes (COL1A1/COL1A2). We identified two children with substitutions in the type I procollagen C-propeptide cleavage site, which disrupt a unique processing step in collagen maturation and define a novel phenotype within OI. The patients have mild OI caused by mutations in COL1A1 (Patient 1: p.Asp1219Asn) or COL1A2 (Patient 2: p.Ala1119Thr), respectively. Patient 1 L1-L4 DXA z-score was +3.9 and pQCT vBMD was +3.1; Patient 2 had L1-L4 DXA z-score of 0.0 and pQCT vBMD of −1.8. Patient BMD contrasts with radiographic osteopenia and histomorphometry without osteosclerosis. Mutant procollagen processing is impaired in pericellular and in vitro assays. Patient dermal collagen fibrils have irregular borders. Incorporation of pC-collagen into matrix leads to increased bone mineralization. FT-IR imaging confirms elevated mineral/matrix ratios in both patients, along with increased collagen maturation in trabecular bone, compared to normal or OI controls. Bone mineralization density distribution revealed a marked shift toward increased mineralization density for both patients. Patient 1 has areas of higher and lower bone mineralization than controls; Patient 2’s bone matrix has a mineral content exceeding even classical OI bone. These patients define a new phenotype of high BMD OI and demonstrate that procollagen C-propeptide cleavage is crucial to normal bone mineralization.
PMCID: PMC3103631  PMID: 21344539
Osteogenesis imperfecta; C-propeptide; collagen; C-proteinase; mineralization; high bone mass
8.  Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord Via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels 
Tissue Engineering. Part A  2011;17(9-10):1287-1302.
This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.
PMCID: PMC3079174  PMID: 21198413
9.  The effects of fixed electrical charge on chondrocyte behavior 
Acta biomaterialia  2011;7(5):2080-2090.
In this study, we have compared the effects of negative and positive fixed charge on chondrocyte behavior in vitro. Electrical charges have been incorporated into oligo(poly(ethylene glycol) fumarate) (OPF) using small charged monomers such as sodium methacrylate (SMA) and (2-(methacryloyloxy) ethyl)-trimethyl ammonium chloride (MAETAC) to produce negatively and positively charged hydrogels, respectively. The hydrogel physical and electrical properties were characterized through measuring and calculating the swelling ratio and zeta potential, respectively. Our results revealed that the properties of these OPF modified hydrogels varied according to the concentration of charged monomers. Zeta potential measurements demonstrated that the electrical property of the OPF hydrogel surfaces changed due to incorporation of SMA and MAETAC and that this change in electrical property was dose-dependent. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy was used to determine the hydrogel surface composition. To assess the effects of surface properties on chondrocyte behavior, primary chondrocytes isolated from rabbit ears were seeded as a monolayer on top of the hydrogels. We demonstrated that the cells remained viable over 7 days and began to proliferate while seeded on top of the hydrogels. Collagen type II staining was positive in all samples; however, the intensity of the stain was higher on negatively charged hydrogels. Similarly, GAG production was significantly higher on negatively charged hydrogels compared to neutral hydrogel. Reverse transcription polymerase chain reaction showed up-regulation of collagen type II and down-regulation of collagen type I on the negatively charged hydrogels. These findings indicate that charge plays an important role in establishing an appropriate environment for chondrocytes and hence in the engineering of cartilage. Thus, further investigation into charged hydrogels for cartilage tissue engineering is merited.
PMCID: PMC3103083  PMID: 21262395
hydrogel; cartilage tissue engineering; OPF; scaffold

Results 1-9 (9)