Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
more »
Year of Publication
Document Types
2.  Enhanced Cell Ingrowth and Proliferation through Three-Dimensional Nanocomposite Scaffolds with Controlled Pore Structures 
Biomacromolecules  2010;11(3):682-689.
We present enhanced cell ingrowth and proliferation through crosslinked three-dimensional (3D) nanocomposite scaffolds fabricated using poly(propylene fumarate) (PPF) and hydroxyapatite (HA) nanoparticles. Scaffolds with controlled internal pore structures were produced from computer-aided design (CAD) models and solid freeform fabrication (SFF) technique, while those with random pore structures were fabricated by NaCl leaching technique for comparison. The morphology and mechanical properties of scaffolds were characterized using scanning electron microscopy (SEM) and mechanical testing, respectively. Pore interconnectivity of scaffolds was assessed using X-ray micro-computed tomography (micro-CT) and 3D imaging analysis. In vitro cell studies have been performed using MC3T3-E1 mouse preosteoblasts and cultured scaffolds in a rotating-wall-vessel bioreactor for 4 and 7 days to assess cell attachment, viability, ingrowth depth, and proliferation. The mechanical properties of crosslinked nanocomposite scaffolds were not significantly different after adding HA or varying pore structures. However, pore interconnectivity of PPF/HA nanocomposite scaffolds with controlled pore structures has been significantly increased, resulting in enhanced cell ingrowth depth 7 days after cell seeding. Cell attachment and proliferation are also higher in PPF/HA nanocomposite scaffolds. These results suggest that crosslinked PPF/HA nanocomposite scaffolds with controlled pore structures may lead to promising bone tissue engineering scaffolds with excellent cell proliferation and ingrowth.
PMCID: PMC2839506  PMID: 20112899
Poly(propylene fumarate) (PPF); Hydroxyapatite (HA); Nanocomposite; Solid freeform fabrication (SFF); Pre-osteoblast responses
3.  Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks: Roles of Crystallinity and Crosslinking Density in Determining Mechanical Properties 
Polymer  2008;49(26):5692-5699.
We present a material design strategy of combining crystallinity and crosslinking to control the mechanical properties of polymeric biomaterials. Three polycaprolactone fumarates (PCLF530, PCLF1250, and PCLF2000) synthesized from the precursor polycaprolactone (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol-1, respectively, were employed to fabricate polymer networks via photo-crosslinking process. Five different amounts of photo-crosslinking initiator were applied during fabrication in order to understand the role of photoinitiator in modulating the crosslinking characteristics and physical properties of PCLF networks. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and degradation temperature (Td) of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties.
PMCID: PMC2951835  PMID: 20936057
Polycaprolactone fumarate; Photo-crosslinking; Mechanical Properties
4.  The Roles of Matrix Polymer Crystallinity and Hydroxyapatite Nanoparticles in Modulating Material Properties of Photo-crosslinked Composites and Bone Marrow Stromal Cell Responses 
Biomaterials  2009;30(20):3359-3370.
Two poly(ε-caprolactone fumarate)s (PCLFs) with distinct physical properties have been employed to prepare nanocomposites with hydroxyapatite (HA) nanoparticles via photo-crosslinking. The two PCLFs are PCLF530 and PCLF2000, named after their precursor PCL diol molecular weight of 530 and 2000 g.mol-1, respectively. Crosslinked PCLF530 is amorphous while crosslinked PCLF2000 is semi-crystalline with a melting temperature (Tm) of ∼40 °C and a crystallinity of 40%. Consequently, the rheological and mechanical properties of crosslinked PCLF2000 are significantly greater than those of crosslinked PCLF530. Structural characterizations and physical properties of both series of crosslinked PCLF/HA nanocomposites with HA compositions of 0%, 5%, 10%, 20%, and 30% have been investigated. By adding HA nanoparticles, crosslinked PCLF530/HA nanocomposites demonstrate enhanced rheological and mechanical properties while the enhancement in compressive modulus is less prominent in crosslinked PCLF2000/HA nanocomposites. In vitro cell attachment and proliferation have been performed using rat bone marrow stromal cells (BMSCs) and correlated with the material properties. Cell attachment and proliferation on crosslinked PCLF530/HA nanocomposite disks have been enhanced strongly with increasing the HA composition. However, surface morphology and surface chemistry such as composition, hydrophilicity, and the capability of adsorbing protein cannot be used to interpret the cell responses on different samples. Instead, the role of surface stiffness in regulating cell responses can be supported by the correlation between the change in compressive modulus and BMSC proliferation on these two series of crosslinked PCLFs and PCLF/HA nanocomposites.
PMCID: PMC2868517  PMID: 19339048
Polycaprolactone fumarate (PCLF); Hydroxyapatite (HA); Nanocomposite; Photo-crosslinking; Bone marrow stromal cell responses
5.  Photo-crosslinked Hybrid Polymer Networks Consisting of Poly(propylene fumarate) (PPF) and Poly(caprolactone fumarate) (PCLF): Controlled Physical Properties and Regulated Bone and Nerve Cell Responses 
Biomacromolecules  2008;9(4):1229-1241.
Aiming to achieve suitable polymeric biomaterials with controlled physical properties for hard and soft tissue replacements, we have developed a series of blends consisting of two photo-crosslinkable polymers: polypropylene fumarate (PPF) and polycaprolactone fumarate (PCLF). Physical properties of both uncrosslinked and UV crosslinked PPF/PCLF blends with PPF composition ranging from 0% to 100% have been investigated extensively. It has been found that the physical properties such as thermal, rheological, and mechanical properties could be modulated efficiently by varying the PPF composition in the blends. Thermal properties including glass transition temperature (Tg) and melting temperature (Tm) have been correlated with their rheological and mechanical properties. Surface characteristics such as surface morphology, hydrophilicity and the capability of adsorbing serum protein from culture medium have also been examined for the crosslinked polymer and blend discs. For potential applications in bone and nerve tissue engineering, in vitro cell studies including cytotoxicity, cell adhesion, and proliferation on crosslinked discs with controlled physical properties have been performed using rat bone marrow stromal cells and SPL201 cells, respectively. In addition, the role of mechanical properties such as surface stiffness in modulating cell responses has been emphasized using this model blend system.
PMCID: PMC2888142  PMID: 18307311
Photo-crosslinking; Polymer blends; Poly(propylene fumarate) (PPF); Poly(caprolactone fumarate) (PCLF); Controlled physical properties; Cell responses
6.  Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks for Peripheral Nerve Regeneration: Physical Properties and Preliminary Biological Evaluations 
Acta biomaterialia  2009;5(5):1531-1542.
In an effort of achieving suitable biomaterials for peripheral nerve regeneration, we present a material design strategy of combining a crystallite-based physical network and a crosslink-based chemical network. Biodegradable polymer disks and conduits have been fabricated by photo-crosslinking three poly(ε-caprolactone fumarate)s (PCLF530, PCLF1250, and PCLF2000), which were synthesized from the precursor poly(ε-caprolactone) (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol−1, respectively. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and crystallinity of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties. Furthermore, in vitro degradation of uncrosslinked and crosslinked PCLFs in PBS crosslinked PCLFs in 1 N NaOH aqueous solution at 37 °C was studied. In vitro cytocompatibility, attachment, and proliferation of Schwann cell precursor line SPL201 cells on three PCLF networks were investigated. Crosslinked PCLF2000 with the highest crystallinity and mechanical properties was found to best support cell attachment and proliferation. Using a new photo-crosslinking method, single-lumen crosslinked PCLF nerve conduits without defects were fabricated in a glass mold. Crosslinked PCLF2000 nerve conduits were selected for evaluation in a 1-cm gap rat sciatic nerve model. Histological evaluation demonstrated that the material was biocompatible with sufficient strength to hold sutures in place after 6 and 17 weeks of implantation. Nerve cable with myelinated axons was found in the crosslinked PCLF2000 nerve conduit.
PMCID: PMC2869216  PMID: 19171506
Poly(ε-caprolactone fumarate); Photo-crosslinking; Peripheral nerve regeneration; Cell responses
7.  Physical Properties and Cellular Responses to Crosslinkable Poly(Propylene Fumarate)/Hydroxyapatite Nanocomposites 
Biomaterials  2008;29(19):2839-2848.
A series of crosslinkable nanocomposites has been developed using hydroxyapatite (HA) nanoparticles and poly(propylene fumarate) (PPF). PPF/HA nanocomposites with four different weight fractions of HA nanoparticles have been characterized in terms of thermal and mechanical properties. To assess surface chemistry of crosslinked PPF/HA nanocomposites, their hydrophilicity and capability of adsorbing proteins have been determined using static contact angle measurement and MicroBCA protein assay kit after incubation with 10% fetal bovine serum (FBS), respectively. In vitro cell studies have been performed using MC3T3-E1 mouse pre-osteoblast cells to investigate the ability of PPF/HA nanocomposites to support cell attachment, spreading, and proliferation after 1, 4, and 7 days. By adding HA nanoparticles to PPF, the mechanical properties of crosslinked PPF/HA nanocomposites have not been increased due to the initially high modulus of crosslinked PPF. However, hydrophilicity and serum protein adsorption on the surface of nanocomposites have been significantly increased, resulting in enhanced cell attachment, spreading, and proliferation after 4 days of cell seeding. These results indicate that crosslinkable PPF/HA nanocomposites are useful for hard tissue replacement because of excellent mechanical strength and osteoconductivity.
PMCID: PMC2430424  PMID: 18403013
Poly(propylene fumarate) (PPF); Hydroxyapatite (HA); Nanocomposite; Protein adsorption; Osteoblast response
8.  Bone Tissue-Engineering Material Poly(propylene fumarate): Correlation between Molecular Weight, Chain Dimensions, and Physical Properties 
Biomacromolecules  2006;7(6):1976-1982.
Poly(propylene fumarate) (PPF) is an important biodegradable and crosslinkable polymer designed for bone tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density ρ melt viscosity η0, hydrodynamic radius RH, and intrinsic viscosity [η]. The temperature dependence of η0 changes progressively with molecular weight, while it can be unified when the temperature is normalized to Tg. The plateau modulus GN0 and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and α, characteristic ratio C∞, unperturbed chain dimension r02/M, packing length p, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on glass transition, while surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility.
PMCID: PMC2530912  PMID: 16768422
9.  Synthesis, Material Properties and Biocompatibility of a Novel Self-Crosslinkable Poly(caprolactone fumarate) as an Injectable Tissue Engineering Scaffold 
Biomacromolecules  2005;6(5):2503-2511.
A novel self-crosslinkable and biodegradable macromer poly(caprolactone fumarate) (PCLF) has been developed for guided bone regeneration. This macromer is a copolymer of fumaryl chloride, which contains double bonds for in-situ crosslinking, and poly(ε-caprolactone) that has a flexible chain to facilitate self-crosslinkability. PCLF was characterized with Fourier transform infrared (FTIR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gel permeation chromatography (GPC). Porous scaffolds were fabricated with sodium chloride particles as the porogen and a chemical initiation system. The PCLF scaffolds were characterized with scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). The cytotoxicity and in vivo biocompatibility of PCLF were also assessed. Our results suggest that this novel copolymer, PCLF, is an injectable, self-crosslinkable, and biocompatible macromer that may be potentially used as a scaffold for tissue engineering applications.
PMCID: PMC2530909  PMID: 16153086
10.  Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis 
B-Chronic Lymphocytic Leukemia (CLL) is an incurable disease predominantly characterized by apoptosis resistance. We have previously described a VEGF signaling pathway that generates apoptosis resistance in CLL B cells. We found induction of significantly more apoptosis in CLL B cells by co-culture with an anti-VEGF antibody. To increase the efficacy of these agents in CLL therapy we have focused on the use of gold nanoparticles (GNP). Gold nanoparticles were chosen based on their biocompatibility, very high surface area, ease of characterization and surface functionalization. We attached VEGF antibody (AbVF) to the gold nanoparticles and determined their ability to kill CLL B cells. Gold nanoparticles and their nanoconjugates were characterized using UV-Visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). All the patient samples studied (N = 7) responded to the gold-AbVF treatment with a dose dependent apoptosis of CLL B cells. The induction of apoptosis with gold-AbVF was significantly higher than the CLL cells exposed to only AbVF or GNP. The gold-AbVF treated cells showed significant down regulation of anti-apoptotic proteins and exhibited PARP cleavage. Gold-AbVF treated and GNP treated cells showed internalization of the nanoparticles in early and late endosomes and in multivesicular bodies. Non-coated gold nanoparticles alone were able to induce some levels of apoptosis in CLL B cells. This paper opens up new opportunities in the treatment of CLL-B using gold nanoparticles and integrates nanoscience with therapy in CLL. In future, potential opportunities exist to harness the optoelectronic properties of gold nanoparticles in the treatment of CLL.
PMCID: PMC1876244  PMID: 17488514

Results 1-10 (10)