Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair 
Biomaterials  2011;32(32):8077-8086.
The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P < 0.01) and OPF+ (P < 0.05) groups, compared to that of the PLGA group. OPF+ polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P < 0.05). Volume of scar and cyst rostral and caudal to the implanted scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies.
PMCID: PMC3163757  PMID: 21803415
OPF; PLGA; PCLF; axon regeneration; spinal cord injury; Schwann cell
2.  Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord Via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels 
Tissue Engineering. Part A  2011;17(9-10):1287-1302.
This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.
PMCID: PMC3079174  PMID: 21198413
3.  Importance of the vasculature in cyst formation after spinal cord injury 
Journal of neurosurgery. Spine  2009;11(4):432-437.
Glial scar and cystic formation greatly contribute to the inhibition of axonal regeneration after spinal cord injury (SCI). Attempts to promote axonal regeneration are extremely challenging in this type of hostile environment. The objective of this study was to examine the surgical methods that may be used to assess the factors that influence the level of scar and cystic formation in SCI.
In the first part of this study, a complete transection was performed at vertebral level T9–10 in adult female Sprague-Dawley rats. The dura mater was either left open (control group) or was closed using sutures or hyaluronic acid. In the second part of the study, complete or subpial transection was performed, with the same dural closure technique applied to both groups. Histological analysis of longitudinal sections of the spinal cord was performed, and the percentage of scar and cyst formation was determined.
Dural closure using sutures resulted in significantly less glial scar formation (p = 0.0248), while incorporation of the subpial transection surgical technique was then shown to significantly decrease cyst formation (p < 0.0001).
In this study, the authors demonstrated the importance of the vasculature in cyst formation after spinal cord trauma and confirmed the importance of dural closure in reducing glial scar formation.
PMCID: PMC2981802  PMID: 19929340
traumatic spinal cord injury; vascular injury; glial cell response to injury
4.  Relationship between Scaffold Channel Diameter and Number of Regenerating Axons in the Transected Rat Spinal Cord 
Acta biomaterialia  2009;5(7):2551-2559.
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450-μm (n=19) or 660-μm in diameter (n=14). Animals were sacrificed after 1, 2, and 3 months. Immunohistochemistry for neurofilament-expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450-μm scaffolds had significantly greater axon fibers per channel at the one month (186 ± 37) and three month (78 ± 11) endpoints than the 660-μm scaffolds (90 ± 19 and 40 ± 6, respectively) (P=0.0164 & 0.0149, respectively). The difference in the area of fibrous rim between the 450-μm and 660-μm channels was most pronounced at the one month endpoint, at 28,046 μm2 ± 6,551 and 58,633 μm2 ± 7,063, respectively (P=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
PMCID: PMC2731813  PMID: 19409869
Biomedical Engineering; Tissue Development and Growth; Central Nervous System; Polymeric Scaffolds

Results 1-4 (4)