PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Respiratory Outcomes of the Surfactant Positive Pressure and Oximetry Randomized Trial 
The Journal of pediatrics  2014;165(2):240-249.e4.
Objective
To explore the early childhood pulmonary outcomes of infants who participated in the NICHD SUPPORT Trial, using a factorial design that randomized extremely preterm infants to lower vs. higher oxygen saturation targets and delivery room CPAP vs. intubation/surfactant, found no significant difference in the primary composite outcome of death or BPD.
Study design
The Breathing Outcomes Study, a prospective secondary to SUPPORT, assessed respiratory morbidity at 6 month intervals from hospital discharge to 18–22 months corrected age (CA). Two pre-specified primary outcomes, wheezing more than twice per week during the worst 2 week period and cough longer than 3 days without a cold were compared between each randomized intervention.
Results
One or more interviews were completed for 918 of 922 eligible infants. The incidence of wheezing and cough were 47.9% and 31.0%, respectively, and did not differ between study arms of either randomized intervention. Infants randomized to lower vs. higher oxygen saturation targets had similar risks of death or respiratory morbidities (except for croup, treatment with oxygen or diuretics at home). Infants randomized to CPAP vs. intubation/surfactant had fewer episodes of wheezing without a cold (28.9% vs. 36.5%, p<0.05), respiratory illnesses diagnosed by a doctor (47.7% vs. 55.2%, p<0.05) and physician or emergency room visits for breathing problems (68.0% vs. 72.9%, p<0.05) by 18–22 months CA.
Conclusion
Treatment with early CPAP rather than intubation/surfactant is associated with less respiratory morbidity by 18–22 months CA. Longitudinal assessment of pulmonary morbidity is necessary to fully evaluate the potential benefits of respiratory interventions for neonates.
doi:10.1016/j.jpeds.2014.02.054
PMCID: PMC4111960  PMID: 24725582
Bronchopulmonary Dysplasia; Infant, Newborn; Infant, Low Birth Weight; Infant, Extremely Low Birth Weight; Infant, Premature; Infant, Extremely Low Gestational Age; Infant mortality; Respiratory morbidity; Intensive care, neonatal; Hospital Readmission; Oximetry; Randomized controlled trial; Retinopathy of prematurity (ROP); Continuous Positive Airway Pressure; Intubation, endotracheal; Pulmonary surfactants/therapeutic use; Oxygen inhalation therapy/methods; Oxygen administration & dosage; Follow-up studies
2.  Neurodevelopmental Outcomes in the Early CPAP and Pulse Oximetry Trial 
The New England journal of medicine  2012;367(26):2495-2504.
BACKGROUND
Previous results from our trial of early treatment with continuous positive airway pressure (CPAP) versus early surfactant treatment in infants showed no significant difference in the outcome of death or bronchopulmonary dysplasia. A lower (vs. higher) target range of oxygen saturation was associated with a lower rate of severe retinopathy but higher mortality. We now report longer-term results from our prespecified hypotheses.
METHODS
Using a 2-by-2 factorial design, we randomly assigned infants born between 24 weeks 0 days and 27 weeks 6 days of gestation to early CPAP with a limited ventilation strategy or early surfactant administration and to lower or higher target ranges of oxygen saturation (85 to 89% or 91 to 95%). The primary composite outcome for the longer-term analysis was death before assessment at 18 to 22 months or neurodevelopmental impairment at 18 to 22 months of corrected age.
RESULTS
The primary outcome was determined for 1234 of 1316 enrolled infants (93.8%); 990 of the 1058 surviving infants (93.6%) were evaluated at 18 to 22 months of corrected age. Death or neurodevelopmental impairment occurred in 27.9% of the infants in the CPAP group (173 of 621 infants), versus 29.9% of those in the surfactant group (183 of 613) (relative risk, 0.93; 95% confidence interval [CI], 0.78 to 1.10; P = 0.38), and in 30.2% of the infants in the lower-oxygen-saturation group (185 of 612), versus 27.5% of those in the higher-oxygen-saturation group (171 of 622) (relative risk, 1.12; 95% CI, 0.94 to 1.32; P = 0.21). Mortality was increased with the lower-oxygen-saturation target (22.1%, vs. 18.2% with the higher-oxygen-saturation target; relative risk, 1.25; 95% CI, 1.00 to 1.55; P = 0.046).
CONCLUSIONS
We found no significant differences in the composite outcome of death or neurodevelopmental impairment among extremely premature infants randomly assigned to early CPAP or early surfactant administration and to a lower or higher target range of oxygen saturation. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung, and Blood Institute; SUPPORT ClinicalTrials.gov number, NCT00233324.)
doi:10.1056/NEJMoa1208506
PMCID: PMC4140695  PMID: 23268664
3.  Prediction of Bronchopulmonary Dysplasia by Postnatal Age in Extremely Premature Infants 
Rationale: Benefits of identifying risk factors for bronchopulmonary dysplasia in extremely premature infants include providing prognostic information, identifying infants likely to benefit from preventive strategies, and stratifying infants for clinical trial enrollment.
Objectives: To identify risk factors for bronchopulmonary dysplasia, and the competing outcome of death, by postnatal day; to identify which risk factors improve prediction; and to develop a Web-based estimator using readily available clinical information to predict risk of bronchopulmonary dysplasia or death.
Methods: We assessed infants of 23–30 weeks' gestation born in 17 centers of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network and enrolled in the Neonatal Research Network Benchmarking Trial from 2000–2004.
Measurements and Main Results: Bronchopulmonary dysplasia was defined as a categorical variable (none, mild, moderate, or severe). We developed and validated models for bronchopulmonary dysplasia risk at six postnatal ages using gestational age, birth weight, race and ethnicity, sex, respiratory support, and FiO2, and examined the models using a C statistic (area under the curve). A total of 3,636 infants were eligible for this study. Prediction improved with advancing postnatal age, increasing from a C statistic of 0.793 on Day 1 to a maximum of 0.854 on Day 28. On Postnatal Days 1 and 3, gestational age best improved outcome prediction; on Postnatal Days 7, 14, 21, and 28, type of respiratory support did so. A Web-based model providing predicted estimates for bronchopulmonary dysplasia by postnatal day is available at https://neonatal.rti.org.
Conclusions: The probability of bronchopulmonary dysplasia in extremely premature infants can be determined accurately using a limited amount of readily available clinical information.
doi:10.1164/rccm.201101-0055OC
PMCID: PMC3136997  PMID: 21471086
bronchopulmonary dysplasia; prematurity; low-birth-weight infant

Results 1-3 (3)