PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Structure of Leishmania major cysteine synthase 
A crystallographic and biochemical study of L. major cysteine synthase, which is a pyridoxyl phosphate-dependent enzyme, is reported. The structure was determined to 1.8 Å resolution and revealed that the cofactor has been lost and that a fragment of γ-poly-d-glutamic acid, a crystallization ingredient, was bound in the active site. The enzyme was inhibited by peptides.
Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-­glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (K i = 4 µM) by DYVI, a peptide based on the C-­terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization.
doi:10.1107/S1744309112019124
PMCID: PMC3388911  PMID: 22750854
Arabidopsis thaliana; cysteine synthase; Leishmania major
2.  Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation 
Cellular Microbiology  2012;14(8):1271-1286.
Leishmania ISPs are ecotin-like natural peptide inhibitors of trypsin-family serine peptidases, enzymes that are absent from the Leishmania genome. This led to the proposal that ISPs inhibit host serine peptidases and we have recently shown that ISP2 inhibits neutrophil elastase, thereby enhancing parasite survival in murine macrophages. In this study we show that ISP1 has less serine peptidase inhibitory activity than ISP2, and in promastigotes both are generally located in the cytosol and along the flagellum. However, in haptomonad promastigotes there is a prominent accumulation of ISP1 and ISP2 in the hemidesmosome and for ISP2 on the cell surface. An L. major mutant deficient in all three ISP genes (Δisp1/2/3) was generated and compared with Δisp2/3 mutants to elucidate the physiological role of ISP1. In in vitro cultures, the Δisp1/2/3 mutant contained more haptomonad, nectomonad and leptomonad promastigotes with elongated flagella and reduced motility compared with Δisp2/3 populations, moreover it was characterized by very high levels of release of exosome-like vesicles from the flagellar pocket. These data suggest that ISP1 has a primary role in flagellar homeostasis, disruption of which affects differentiation and flagellar pocket dynamics.
doi:10.1111/j.1462-5822.2012.01798.x
PMCID: PMC3440592  PMID: 22486816

Results 1-2 (2)