PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine 
The Journal of biological chemistry  2006;281(35):25062-25075.
Trichomonas vaginalis is an early divergent eukaryote with many unusual biochemical features. It is an anaerobic protozoan parasite of humans that is thought to rely heavily on cysteine as a major redox buffer, as it lacks glutathione. We report here that for synthesis of cysteine from sulphide, T. vaginalis relies upon cysteine synthase. The enzyme (TvCS1) can use as substrates either O-acetylserine or O-phosphoserine. The Kms of the enzyme for sulphide is very low (0.02 mM), suggesting that the enzyme may be a means of ensuring that sulphide in the parasite is maintained at a low level. T. vaginalis appears to lack serine acetyltransferase, the source of O-acetylserine in many cells, but has a functional 3-phosphoglycerate dehydrogenase and an O-phosphoserine aminotransferase that together result in the production of O-phosphoserine, suggesting that this is the physiological substrate. TvCS1 can also use thiosulphate as substrate. Overall, TvCS1 has substrate specificities similar to those reported for cysteine synthases of Aeropyrum pernix and Escherichia coli and this is reflected by sequence similarities around the active site. We suggest that these enzymes are classified together as type B cysteine synthases and we hypothesise that the use of O-phosphoserine is a common characteristic of these cysteine synthases. The level of cysteine synthase in T. vaginalis is regulated according to need, such that parasites growing in an environment rich in cysteine have low activity, whereas exposure to propargylglycine results in elevated cysteine synthase activity. Humans lack cysteine synthase, thus this parasite enzyme could be an exploitable drug target.
doi:10.1074/jbc.M600688200
PMCID: PMC2645516  PMID: 16735516
Trichomonas; parasite; antioxidant; cysteine synthase; desulphurase
2.  THE STRUCTURE OF LEISHMANIA MEXICANA ICP PROVIDES EVIDENCE FOR CONVERGENT EVOLUTION OF CYSTEINE PEPTIDASE INHIBITORS* 
The Journal of biological chemistry  2005;281(9):5821-5828.
Clan CA, family C1 cysteine peptidases (CPs) are important virulence factors and drug targets in parasites that cause neglected diseases. Natural CP inhibitors of the I42 family, known as ICP, occur in some protozoa and bacterial pathogens, but are absent from metazoa. They are active against both parasite and mammalian CPs, despite having no sequence similarity with other classes of CP inhibitor. Recent data suggest that L. mexicana ICP plays an important role in host-parasite interactions. We have now solved the structure of ICP from L. mexicanaby NMR and shown that it adopts a type of immunoglobulin-like fold not previously reported in lower eukaryotes or bacteria. The structure places three loops containing highly conserved residues at one end of the molecule, one loop being highly mobile. Interaction studies with CPs confirm the importance of these loops for the interaction between ICP and CPs and suggest the mechanism of inhibition. Structure-guided mutagenesis of ICP has revealed that residues in the mobile loop are critical for CP inhibition. Data-driven docking models support the importance of the loops in the ICP-CP interaction. This study provides structural evidence for the convergent evolution from an immunoglobulin fold of CP inhibitors with a cystatin-like mechanism.
doi:10.1074/jbc.M510868200
PMCID: PMC1473161  PMID: 16407198

Results 1-2 (2)