Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
more »
Year of Publication
Document Types
author:("Wen, zhang T.")
1.  Opportunities for Disrupting Cariogenic Biofilms 
Advances in dental research  2009;21(1):17-20.
Bacteria adhere to a surface and, through cell division and coordinated expression of gene products, to develop into a structurally-complex population of adherent cells. This process, known as biofilm formation, requires that intrinsic and extrinsic signals are transduced into appropriate gene expression patterns as biofilms mature. Mutational analysis has begun to reveal the complexity of systems used by Streptococcus mutans to ensure proper biofilm formation. These studies have revealed new and unique targets for the design of broadly-effective anti-caries strategies.
PMCID: PMC2853230  PMID: 19710079
2.  Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model 
BMC Microbiology  2010;10:111.
Microbial cell-cell interactions in the oral flora are believed to play an integral role in the development of dental plaque and ultimately, its pathogenicity. The effects of other species of oral bacteria on biofilm formation and virulence gene expression by Streptococcus mutans, the primary etiologic agent of dental caries, were evaluated using a dual-species biofilm model and RealTime-PCR analysis.
As compared to mono-species biofilms, biofilm formation by S. mutans was significantly decreased when grown with Streptococcus sanguinis, but was modestly increased when co-cultivated with Lactobacillus casei. Co-cultivation with S. mutans significantly enhanced biofilm formation by Streptococcus oralis and L. casei, as compared to the respective mono-species biofilms. RealTime-PCR analysis showed that expression of spaP (for multi-functional adhesin SpaP, a surface-associated protein that S. mutans uses to bind to the tooth surface in the absence of sucrose), gtfB (for glucosyltransferase B that synthesizes α1,6-linked glucan polymers from sucrose and starch carbohydrates) and gbpB (for surface-associated protein GbpB, which binds to the glucan polymers) was decreased significantly when S. mutans were co-cultivated with L. casei. Similar results were also found with expression of spaP and gbpB, but not gtfB, when S. mutans was grown in biofilms with S. oralis. Compared to mono-species biofilms, the expression of luxS in S. mutans co-cultivated with S. oralis or L. casei was also significantly decreased. No significant differences were observed in expression of the selected genes when S. mutans was co-cultivated with S. sanguinis.
These results suggest that the presence of specific oral bacteria differentially affects biofilm formation and virulence gene expression by S. mutans.
PMCID: PMC2867949  PMID: 20398271
3.  Characteristics of Biofilm Formation by Streptococcus mutans in the Presence of Saliva▿  
Infection and Immunity  2008;76(9):4259-4268.
Interactions between salivary agglutinin and the adhesin P1 of Streptococcus mutans contribute to bacterial aggregation and mediate sucrose-independent adherence to tooth surfaces. We have examined biofilm formation by S. mutans UA159, and derivative strains carrying mutations affecting the localization or expression of P1, in the presence of fluid-phase or adsorbed saliva or salivary agglutinin preparations. Whole saliva- and salivary agglutinin-induced aggregation of S. mutans was adversely affected by the loss of P1 and sortase (SrtA) but not by the loss of trigger factor (RopA). Fluid-phase salivary agglutinin and, to a lesser extent, immobilized agglutinin inhibited biofilm development by S. mutans in the absence of sucrose, and whole saliva was more effective at decreasing biofilm formation than salivary agglutinin. Inhibition of biofilm development by salivary agglutinin was differently influenced by particular mutations, with the P1-deficient strain displaying a greater inhibition of biofilm development than the SrtA- or RopA-deficient strains. As expected, biofilm-forming capacities of all strains in the presence of salivary preparations were markedly enhanced in the presence of sucrose, although biofilm formation by the mutants was less efficient than that by the parental strain. Aeration strongly inhibited biofilm development, and the presence of salivary components did not restore biofilm formation in aerated conditions. The results disclose a potent ability of salivary constituents to moderate biofilm formation by S. mutans through P1-dependent and P1-independent pathways.
PMCID: PMC2519434  PMID: 18625741
4.  Effects of Oxygen on Virulence Traits of Streptococcus mutans▿  
Journal of Bacteriology  2007;189(23):8519-8527.
Oxygen profoundly affects the composition of oral biofilms. Recently, we showed that exposure of Streptococcus mutans to oxygen strongly inhibits biofilm formation and alters cell surface biogenesis. To begin to dissect the underlying mechanisms by which oxygen affects known virulence traits of S. mutans, transcription profiling was used to show that roughly 5% of the genes of this organism are differentially expressed in response to aeration. Among the most profoundly upregulated genes were autolysis-related genes and those that encode bacteriocins, the ClpB protease chaperone subunit, pyruvate dehydrogenase, the tricarboxylic acid cycle enzymes, NADH oxidase enzymes, and certain carbohydrate transporters and catabolic pathways. Consistent with our observation that the ability of S. mutans to form biofilms was severely impaired by oxygen exposure, transcription of the gtfB gene, which encodes one of the primary enzymes involved in the production of water-insoluble, adhesive glucan exopolysaccharides, was down-regulated in cells growing aerobically. Further investigation revealed that transcription of gtfB, but not gtfC, was responsive to oxygen and that aeration causes major changes in the amount and degree of cell association of the Gtf enzymes. Moreover, inactivation of the VicK sensor kinase affected the expression and localization the GtfB and GtfC enzymes. This study provides novel insights into the complex transcriptional and posttranscriptional regulatory networks used by S. mutans to modulate virulence gene expression and exopolysaccharide production in response to changes in oxygen availability.
PMCID: PMC2168947  PMID: 17921307
5.  Multilevel Control of Competence Development and Stress Tolerance in Streptococcus mutans UA159  
Infection and Immunity  2006;74(3):1631-1642.
Genetic competence appears to be important in establishment of biofilms and tolerance of environmental insults. We report here that the development of competence is controlled at multiple levels in a complex network that includes two signal-transducing two-component systems (TCS). Using Streptococcus mutans strain UA159, we demonstrate that the histidine kinase CiaH, but not the response regulator CiaR, causes a dramatic decrease in biofilm formation and in transformation efficiency. Inactivation of comE or comD had no effect on stress tolerance, but transformability of the mutants was poor and was not restored by addition of competence-stimulating peptide (CSP). Horse serum (HS) or bovine serum albumin (BSA) had no impact on transformability of any strains. Interestingly, though, the presence of HS or BSA in combination with CSP was required for efficient induction of comD, comX, and comYA, and induction was dependent on ComDE and CiaH, but not CiaR. Inactivation of comC, encoding CSP, had no impact on transformation, and CiaH was shown to be required for optimal comC expression. This study reveals that S. mutans integrates multiple environmental signals through CiaHR and ComDE to coordinate induction of com genes and that CiaH can exert its influence through CiaR and as-yet-unidentified regulators. The results highlight critical differences in the role and regulation of CiaRH and com genes in different S. mutans isolates and between S. mutans and Streptococcus pneumoniae, indicating that substantial divergence in the role and regulation of TCS and competence genes has occurred in streptococci.
PMCID: PMC1418624  PMID: 16495534

Results 1-5 (5)