PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None
Journals
more »
Year of Publication
Document Types
1.  Predictors of Mucoid Pseudomonas Colonization in Cystic Fibrosis Patients 
Pediatric pulmonology  2008;43(5):463-471.
Summary
Rationale: Chronic mucoid Pseudomonas aeruginosa within the airway in cystic fibrosis (CF) patients can determine prognosis. Understanding the risk factors of mucoid P. aeruginosa acquisition may change how we deliver care. This study aims to evaluate whether presence of risk factors reported to predict disease severity including gender, CFTR genotype, bacterial organisms in airway cultures, and serum levels of vitamins A and E, albumin, C-reactive protein, alpha 1-antitrypsin, and immunoglobulins increased the risk of mucoid P. aeruginosa acquisition. Methods: Primary endpoint was age at first transition from negative to positive culture for mucoid P. aeruginosa. Cox proportional hazards regression with time-dependent covariates examined development of mucoid P. aeruginosa infection and its association with longitudinally measured serum biomarkers, pulmonary function, and culture results for other organisms. Results: Median ages at CF diagnosis and at first culture were 0.55 and 5.7 years, respectively. Median number of cultures/patient was 17. Of the 323 subjects, 150 developed mucoid P. aeruginosa during a median 8.1 years’ follow-up. In multivariate analysis, gender (relative hazard [RH] 0.55 for male vs. female, P=0.001), number of DF508 alleles (RH 1.66 for1 or 2 vs. 0, P=0.04), FEV1 % (RH 1.16 for 10% decrease, P=0.008), and most recent Staphylococcus aureus status (RH 0.24 for positive vs. negative, P< 0.0001) remained statistically significant. Conclusion: Female gender, number of DF508 alleles, decreased lung function, and lack of S. aureus on recent sputum culture are important risk factors for early detection of mucoid P. aeruginosa.
doi:10.1002/ppul.20794
PMCID: PMC3693457  PMID: 18361452
cystic fibrosis; Pseudomonas colonization
2.  Modeling the Potential Impact of a Prescription Drug Copayment Increase on the Adult Asthmatic Medicaid Population 
Objectives
The Commonwealth of Massachusetts increased the copayment for prescription drugs by $1.50 for Medicaid (MassHealth) beneficiaries in 2003. We sought to determine the likely health outcomes and cost shifts attributable to this copayment increase using the example of inhaled corticosteroids (ICS) use among adult asthmatic Medicaid beneficiaries.
Method
We compared the predicted costs and health outcomes projected over a 1-year time horizon with and without the increase in copayment from the perspective of MassHealth, providers, pharmacies, and MassHealth beneficiaries by employing decision analysis simulation model.
Results
In a target population of 17,500 adult asthmatics, increased copayments from 50¢ to $2.00 would result in an additional 646 acute events per year, caused by increased drug nonadherence. Annual combined net savings for the state and federal governments would be $2.10 million. Projected MassHealth savings are attributable to both decreased drug utilization and lower pharmacy reimbursement rates; these more than offset the additional costs of more frequent acute exacerbations. Pharmacies would lose $1.98 million in net revenues, MassHealth beneficiaries would pay an additional $0.28 million, and providers would receive additional $0.16 million.
Conclusion
Over its first year of implementation, increase in the prescription drug copayment is expected to produce more frequent acute exacerbations among asthmatic MassHealth beneficiaries who use ICS and to shift the financial burden from government to other stakeholders.
doi:10.1111/j.1524-4733.2007.00219.x
PMCID: PMC3476042  PMID: 18237365
asthma; copayment; medicaid; prescription drug
3.  Higher adiposity in infancy associated with recurrent wheeze in a prospective cohort of children 
Background
Few prospective data link early childhood adiposity with asthma-related symptoms.
Objective
We sought to examine the associations of weight-for-length (WFL) at age 6 months with incidence of wheezing by age 3 years.
Methods
We studied 932 children in a prospective cohort of children. The main outcome was recurrent wheezing, which was defined as parents’ report of wheezing between 2 and 3 years of age plus wheezing in either year 1 or 2 of life. Secondary outcomes included any wheezing from 6 months to 3 years and current asthma. We used multiple logistic regression to examine associations of 6-month WFL z scores with these outcomes.
Results
At 6 months, the infants’ mean WFL z score was 0.68 (SD, 0.94; range −2.96 to 3.24). By age 3 years, 14% of children had recurrent wheezing. After adjustment for a variety of potential confounders, we found that each 1-unit increment in 6-month WFL z score was associated with greater odds of recurrent wheezing (odds ratio [OR], 1.46; 95% CI, 1.11–1.91) and any wheezing (OR, 1.23; 95% CI, 1.03–1.48). We observed a weaker association between 6-month WFL z score and current asthma (OR, 1.22; 95% CI, 0.94–1.59).
Conclusion
Infants with higher WFL z scores at 6 months of age had a greater risk of recurrent wheezing by age 3 years. It is unclear whether the relationship of infant adiposity and early-life wheeze extends to allergic asthma or wheeze that can persist into later childhood. Our findings suggest that early interventions to prevent excess infant adiposity might help reduce children’s risk of asthma-related symptoms.
doi:10.1016/j.jaci.2008.03.021
PMCID: PMC3253368  PMID: 18466784
Asthma; wheeze; adiposity; children; prospective study
4.  Chromosome 17: Association of a large inversion polymorphism with corticosteroid response in asthma 
Pharmacogenetics and genomics  2008;18(8):733-737.
A 900-KB inversion exists within a large region of conserved linkage disequilibrium (LD) on chromosome 17. CRHR1 is located within the inversion region and associated with inhaled corticosteroid response in asthma. We hypothesized that CRHR1 variants are in LD with the inversion, supporting a potential role for natural selection in the genetic response to corticosteroids. We genotyped 6 single nucleotide polymorphisms (SNPs) spanning chr17:40,410,565–42,372,240, including 4 SNPs defining inversion status. Similar allele frequencies and strong LD were noted between the inversion and a CRHR1 SNP previously associated with lung function response to inhaled corticosteroids. Each inversion-defining SNP was strongly associated with inhaled corticosteroid response in adult asthma (p-values 0.002–0.005). The CRHR1 response to inhaled corticosteroids may thus be explained by natural selection resulting from inversion status or by long-range LD with another gene. Additional pharmacogenetic investigations into to regions of chromosomal diversity, including copy number variation and inversions, are warranted.
doi:10.1097/FPC.0b013e3282fe6ebf
PMCID: PMC3225071  PMID: 18622266
CRHR1; tau haplotype; MAPT; inversion; asthma; corticosteroid; pharmacogenetics
5.  Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma 
Pharmacogenetics and genomics  2008;18(5):373-382.
Objective
Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.
Methods
We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers.
Results
Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts.
Conclusion
We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
doi:10.1097/FPC.0b013e3282fa760a
PMCID: PMC3208318  PMID: 18408560
Asthma; genetics; corticotrophin releasing hormone receptor 2; CRHR2; bronchodilator response; polymorphism; β2 adrenergic receptor agonist
6.  Repeatability of Response to Asthma Medications 
Background
Pharmacogenetic studies of drug response in asthma assume that patients respond consistently to a treatment but that treatment response varies across patients, however, no formal studies have demonstrated this.
Objective
To determine the repeatability of commonly used outcomes for treatment response to asthma medications: bronchodilator response, forced expiratory volume in 1 second (FEV1), and provocative concentration of methacholine producing a 20% decline in FEV1 (PC20).
Methods
The Childhood Asthma Management Program (CAMP) was a multi-center clinical trial of children randomized to receiving budesonide, nedocromil, or placebo. We determined the intraclass correlation coefficient (ICC) for each outcome over repeated visits over four years in CAMP using mixed effects regression models. We adjusted for the covariates: age, race/ethnicity, height, family income, parental education, and symptom score. We incorporated each outcome for each child as repeated outcome measurements and stratified by treatment group.
Results
The ICC for bronchodilator response was 0.31 in the budesonide group, 0.35 in the nedocromil group, and 0.40 in the placebo group, after adjusting for covariates. The ICC for FEV1 was 0.71 in the budesonide group, 0.60 in the nedocromil group, and 0.69 in the placebo group, after adjusting for covariates. The ICC for PC20 was 0.67 in the budesonide and placebo groups and 0.73 in the nedocromil group, after adjusting for covariates.
Conclusion
The within treatment group repeatability of FEV1 and PC20 are high; thus these phenotypes are heritable. FEV1 and PC20 may be better phenotypes than bronchodilator response for studies of treatment response in asthma.
doi:10.1016/j.jaci.2008.10.015
PMCID: PMC2980870  PMID: 19064281
asthma; drug response; heritability; bronchodilator; pharmacogenetics
7.  Clinical Predictors and Outcomes of Consistent Bronchodilator Response in the Childhood Asthma Management Program 
Background
Among asthmatics, bronchodilator response (BDR) to inhaled ß2- adrenergic agonists is variable, and the significance of a consistent response over time is unknown.
Objective
We assessed baseline clinical variables and determined the clinical outcomes associated with a consistently positive BDR over 4 years in children with mild-moderate persistent asthma.
Methods
In the 1,041 participants in the Childhood Asthma Management Program (CAMP), subjects with a change in FEV1 of 12% or greater (and 200mLs) after inhaled ß2 agonist at each of their yearly follow-up visits (consistent BDR) were compared with those who did not have a consistent BDR.
Results
We identified 52 children with consistent BDR over the 4-year trial. Multivariable logistic regression modeling demonstrated that baseline pre-bronchodilator FEV1 (OR=0.71, p<0.0001), log 10 IgE level (OR=1.97, p=0.002), and lack of treatment with inhaled corticosteroids (OR=0.31, p=0.009) were associated with a consistent BDR. Individuals who had a consistent BDR had more hospital visits (p=0.007), required more prednisone bursts (p=0.0007), had increased nocturnal awakenings due to asthma (p<0.0001), and missed more days of school (p=0.03) than non-responders during the 4-year follow-up.
Conclusions
We have identified predictors of consistent BDR and determined that this phenotype is associated with poor clinical outcomes.
doi:10.1016/j.jaci.2008.09.004
PMCID: PMC2947830  PMID: 18848350
asthma; consistent bronchodilator response; outcomes
8.  Variants in TGFB1, Dust Mite Exposure, and Disease Severity in Children with Asthma 
Rationale: Polymorphisms in the gene for transforming growth factor-β1 (TGFB1) have been associated with asthma, but not with airway responsiveness or disease exacerbations in subjects with asthma.
Objectives: To test for association between single nucleotide polymorphisms (SNPs) in TGFB1 and markers of asthma severity in childhood.
Methods: We tested for the association between nine SNPs in TGFB1 and indicators of asthma severity (lung function, airway responsiveness, and disease exacerbations) in two cohorts: 416 Costa Rican parent-child trios and 465 families of non-Hispanic white children in the Childhood Asthma Management Program (CAMP). We also tested for the interaction between these polymorphisms and exposure to dust mite allergen on asthma severity.
Measurements and Main Results: The A allele of promoter SNP rs2241712 was associated with increased airway responsiveness in Costa Rica (P = 0.0006) and CAMP (P = 0.005), and the C allele of an SNP in the promoter region (rs1800469) was associated with increased airway responsiveness in both cohorts (P ≤ 0.01). Dust mite exposure modified the effect of the C allele of exonic SNP rs1800471 on airway responsiveness (P = 0.03 for interactions in both cohorts). The T allele of a coding SNP (rs1982073) was associated with a reduced risk of asthma exacerbations in Costa Rica (P = 0.009) and CAMP (P = 0.005). Dust mite exposure also significantly modified the effect of the A allele of the promoter SNP rs2241712 on asthma exacerbations in both cohorts.
Conclusions: SNPs in TGFB1 are associated with airway responsiveness and disease exacerbations in children with asthma. Moreover, dust mite exposure may modify the effect of TGFB1 SNPs on airway responsiveness and asthma exacerbations.
doi:10.1164/rccm.200808-1268OC
PMCID: PMC2648908  PMID: 19096005
airway responsiveness; asthma; dust mite allergen; single nucleotide polymorphisms; transforming growth factor-β1
9.  On the frequency of copy number variants 
Bioinformatics  2008;24(20):2350-2355.
Motivation: Estimating the frequency distribution of copy number variants (CNVs) is an important aspect of the effort to characterize this new type of genetic variation. Currently, most studies report a strong skew toward low-frequency CNVs. In this article, our goal is to investigate the frequencies of CNVs. We employ a two-step procedure for the CNV frequency estimation process. We use family information a posteriori to select only the most reliable CNV regions, i.e. those showing high rates of Mendelian transmission.
Results: Our results suggest that the current skew toward low-frequency CNVs may not be representative of the true frequency distribution, but may be due, among other reasons, to the non-negligible false negative rates that characterize CNV detection methods. Moreover, false positives are also likely, as low-frequency CNVs are hard to detect with small sample sizes and technologies that are not ideally suited for their detection. Without appropriate validation methods, such as incorporation of biologically relevant information (for example, in our case, the transmission of heritable CNVs from parents to offspring), it is difficult to assess the validity of specific CNVs, and even harder to obtain reliable frequency estimates.
Availability: Software implementing the methods described in this article is available for download at the following address: http://www.isites.harvard.edu/icb/icb.do?keyword=k36162
Contact: iionita@hsph.harvard.edu
Supplementary informantion: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btn421
PMCID: PMC2562008  PMID: 18689430
10.  ARG1 Is a Novel Bronchodilator Response Gene 
Rationale: Inhaled β-agonists are one of the most widely used classes of drugs for the treatment of asthma. However, a substantial proportion of patients with asthma do not have a favorable response to these drugs, and identifying genetic determinants of drug response may aid in tailoring treatment for individual patients.
Objectives: To screen variants in candidate genes in the steroid and β-adrenergic pathways for association with response to inhaled β-agonists.
Methods: We genotyped 844 single nucleotide polymorphisms (SNPs) in 111 candidate genes in 209 children and their parents participating in the Childhood Asthma Management Program. We screened the association of these SNPs with acute response to inhaled β-agonists (bronchodilator response [BDR]) using a novel algorithm implemented in a family-based association test that ranked SNPs in order of statistical power. Genes that had SNPs with median power in the highest quartile were then taken for replication analyses in three other asthma cohorts.
Measurements and Main Results: We identified 17 genes from the screening algorithm and genotyped 99 SNPs from these genes in a second population of patients with asthma. We then genotyped 63 SNPs from four genes with significant associations with BDR, for replication in a third and fourth population of patients with asthma. Evidence for association from the four asthma cohorts was combined, and SNPs from ARG1 were significantly associated with BDR. SNP rs2781659 survived Bonferroni correction for multiple testing (combined P value = 0.00048, adjusted P value = 0.047).
Conclusions: These findings identify ARG1 as a novel gene for acute BDR in both children and adults with asthma.
doi:10.1164/rccm.200709-1363OC
PMCID: PMC2556451  PMID: 18617639
pharmacogenetics; asthma; bronchodilator agents
11.  Airway Responsiveness in Mild to Moderate Childhood Asthma 
Rationale: Airway responsiveness is a prognostic marker for asthma symptoms in later life.
Objectives: To evaluate characteristics responsible for persistence of airway responsiveness in children with asthma.
Methods: A total of 1,041 children, initially aged 5–12 years, with mild to moderate persistent asthma enrolled in the Childhood Asthma Management Program (CAMP) were studied prospectively for 8.6 ± 1.8 years with methacholine challenges yearly.
Measurements and Main Results: Least squares geometric mean models were fit to determine effects of sex and age on airway responsiveness (provocative concentration producing 20% decrease in FEV1 [PC20]). Multiple linear regression analysis was performed to determine factors at baseline and over time, which were associated with PC20 at end of follow-up. A total of 7,748 methacholine challenges were analyzed. PC20 increased with age, with boys having greater increase after age 11 years than girls (P < 0.001). The divergence coincided with the mean age for Tanner stage 2. Postpubertal girls had greater airway responsiveness, even after adjustment for FEV1 and other potential confounders. Although multivariable regression analyses noted a variety of factors that influenced airway responsivness in both sexes, a history of hay fever (β= −0.30, P = 0.005), respiratory allergy (β= −0.32, P = 0.006), or recent inhaled corticosteroid usage (β= −0.18, P = 0.02) were associated with decrements in final log PC20 only in girls.
Conclusions: Airway responsiveness (PC20) is more severe in the postpubertal female with asthma than in males. Although there are factors associated with airway responsiveness in both males and females, sex-specific factors may contribute to new insights into asthma pathogenesis.
doi:10.1164/rccm.200708-1174OC
PMCID: PMC2542438  PMID: 18420965
methacholine; PC20; FEV1; bronchoconstriction
12.  A Polymorphism of GRK5 Alters Agonist-Promoted Desensitization of β2-Adrenergic Receptors 
Pharmacogenetics and genomics  2008;18(8):729-732.
β-agonist treatment of asthma displays substantial interindividual variation, which has prompted polymorphism discovery and characterization of β2-adrenergic (β2AR) signaling genes. β2AR function undergoes desensitization during persistent agonist exposure due to receptor phosphorylation by G-protein coupled receptor kinases (GRKs). GRK5 was found to be highly expressed in airway smooth muscle, the tissue target for β-agonists. The coding region is polymorphic at codon 41, where Gln can be substituted by Leu (minor allele), but almost exclusively in those of African descent. In transfected cells, GRK5-Leu41 evoked a greater degree of agonist-promoted desensitization of adenylyl cyclase compared to GRK5-Gln41. Consistent with this functional effect, agonist-promoted β2AR phosphorylation was greater in cells expressing GRK5-Leu41, as was the rate of agonist-promoted receptor internalization. In studies with mutated β2AR lacking PKA-phosphorylation sites, this phenotype was confirmed as being GRK-specific. So, GRK5-Leu41 represents a gain-of-function polymorphism that evokes enhanced loss-of-function of β2AR during persistent agonist exposure, and thus may contribute to β-agonist variability in asthma treatment of African-Americans.
doi:10.1097/FPC.0b013e32830967e9
PMCID: PMC2699179  PMID: 18622265
Polymorphism; tachyphylaxis; β-agonist; kinases; desensitization; asthma
13.  Creating and evaluating genetic tests predictive of drug response 
Nature reviews. Drug discovery  2008;7(7):568-574.
A key goal of pharmacogenetics — the use of genetic variation to elucidate inter-individual variation in drug treatment response — is to aid the development of predictive genetic tests that could maximize drug efficacy and minimize drug toxicity. The completion of the Human Genome Project and the associated HapMap Project, together with advances in technologies for investigating genetic variation, have greatly advanced the potential to develop such tests; however, many challenges remain. With the aim of helping to address some of these challenges, this article discusses the steps that are involved in the development of predictive tests for drug treatment response based on genetic variation, and factors that influence the development and performance of these tests.
doi:10.1038/nrd2520
PMCID: PMC2682785  PMID: 18587383
14.  Diversity of the gut microbiota and eczema in early life 
Background
A modest number of prospective studies of the composition of the intestinal microbiota and eczema in early life have yielded conflicting results.
Objective
To examine the relationship between the bacterial diversity of the gut and the development of eczema in early life by methods other than stool culture.
Methods
Fecal samples were collected from 21 infants at 1 and 4 months of life. Nine infants were diagnosed with eczema by the age of 6 months (cases) and 12 infants were not (controls). After conducting denaturating gradient gel electrophoresis (DGGE) of stool samples, we compared the microbial diversity of cases and controls using the number of electrophoretic bands and the Shannon index of diversity (H') as indicators.
Results
Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02). The increase in diversity from 1 to 4 months of age was significant in controls (P = 0.04) but not in children who developed eczema by 6 months of age (P = 0.32).
Conclusion
Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.
doi:10.1186/1476-7961-6-11
PMCID: PMC2562383  PMID: 18808715
15.  Screening and Replication using the Same Data Set: Testing Strategies for Family-Based Studies in which All Probands Are Affected 
PLoS Genetics  2008;4(9):e1000197.
For genome-wide association studies in family-based designs, we propose a powerful two-stage testing strategy that can be applied in situations in which parent-offspring trio data are available and all offspring are affected with the trait or disease under study. In the first step of the testing strategy, we construct estimators of genetic effect size in the completely ascertained sample of affected offspring and their parents that are statistically independent of the family-based association/transmission disequilibrium tests (FBATs/TDTs) that are calculated in the second step of the testing strategy. For each marker, the genetic effect is estimated (without requiring an estimate of the SNP allele frequency) and the conditional power of the corresponding FBAT/TDT is computed. Based on the power estimates, a weighted Bonferroni procedure assigns an individually adjusted significance level to each SNP. In the second stage, the SNPs are tested with the FBAT/TDT statistic at the individually adjusted significance levels. Using simulation studies for scenarios with up to 1,000,000 SNPs, varying allele frequencies and genetic effect sizes, the power of the strategy is compared with standard methodology (e.g., FBATs/TDTs with Bonferroni correction). In all considered situations, the proposed testing strategy demonstrates substantial power increases over the standard approach, even when the true genetic model is unknown and must be selected based on the conditional power estimates. The practical relevance of our methodology is illustrated by an application to a genome-wide association study for childhood asthma, in which we detect two markers meeting genome-wide significance that would not have been detected using standard methodology.
Author Summary
The current state of genotyping technology has enabled researchers to conduct genome-wide association studies of up to 1,000,000 SNPs, allowing for systematic scanning of the genome for variants that might influence the development and progression of complex diseases. One of the largest obstacles to the successful detection of such variants is the multiple comparisons/testing problem in the genetic association analysis. For family-based designs in which all offspring are affected with the disease/trait under study, we developed a methodology that addresses this problem by partitioning the family-based data into two statistically independent components. The first component is used to screen the data and determine the most promising SNPs. The second component is used to test the SNPs for association, where information from the screening is used to weight the SNPs during testing. This methodology is more powerful than standard procedures for multiple comparisons adjustment (i.e., Bonferroni correction). Additionally, as only one data set is required for screening and testing, our testing strategy is less susceptible to study heterogeneity. Finally, as many family-based studies collect data only from affected offspring, this method addresses a major limitation of previous methodologies for multiple comparisons in family-based designs, which require variation in the disease/trait among offspring.
doi:10.1371/journal.pgen.1000197
PMCID: PMC2529406  PMID: 18802462
16.  Characterization of Patients who Suffer Asthma Exacerbations using Data Extracted from Electronic Medical Records 
The increasing availability of electronic medical records offers opportunities to better characterize patient populations and create predictive tools to individualize health care. We determined which asthma patients suffer exacerbations using data extracted from electronic medical records of the Partners Healthcare System using Natural Language Processing tools from the “Informatics for Integrating Biology to the Bedside” center (i2b2). Univariable and multivariable analysis of data for 11,356 patients (1,394 cases, 9,962 controls) found that race, BMI, smoking history, and age at initial observation are predictors of asthma exacerbations. The area under the receiver operating characteristic curve (AUROC) corresponding to prediction of exacerbations in an independent group of 1,436 asthma patients (106 cases, 1,330 controls) is 0.67. Our findings are consistent with previous characterizations of asthma patients in epidemiological studies, and demonstrate that data extracted by natural language processing from electronic medical records is suitable for the characterization of patient populations.
PMCID: PMC2655929  PMID: 18999057

Results 1-16 (16)