PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Very important pharmacogene summary for VDR 
Pharmacogenetics and genomics  2012;22(10):758-763.
doi:10.1097/FPC.0b013e328354455c
PMCID: PMC3678550  PMID: 22588316
drug response; genetic variants; pharmacogenomics; vitamin D receptor
2.  Development of a Pharmacogenetic Predictive Test in asthma: proof of concept 
Pharmacogenetics and genomics  2010;20(2):86-93.
Objective
To assess the feasibility of developing a Combined Clinical and Pharmacogenetic Predictive Test, comprised of multiple single nucleotide polymorphisms (SNPs) that is associated with poor bronchodilator response (BDR).
Methods
We genotyped SNPs that tagged the whole genome of the parents and children in the Childhood Asthma Management Program (CAMP) and implemented an algorithm using a family-based association test that ranked SNPs by statistical power. The top eight SNPs that were associated with BDR comprised the Pharmacogenetic Predictive Test. The Clinical Predictive Test was comprised of baseline forced expiratory volume in 1 s (FEV1). We evaluated these predictive tests and a Combined Clinical and Pharmacogenetic Predictive Test in three distinct populations: the children of the CAMP trial and two additional clinical trial populations of asthma. Our outcome measure was poor BDR, defined as BDR of less than 20th percentile in each population. BDR was calculated as the percent difference between the prebronchodilator and postbronchodilator (two puffs of albuterol at 180 μg/puff) FEV1 value. To assess the predictive ability of the test, the corresponding area under the receiver operating characteristic curves (AUROCs) were calculated for each population.
Results
The AUROC values for the Clinical Predictive Test alone were not significantly different from 0.50, the AUROC of a random classifier. Our Combined Clinical and Pharmacogenetic Predictive Test comprised of genetic polymorphisms in addition to FEV1 predicted poor BDR with an AUROC of 0.65 in the CAMP children (n= 422) and 0.60 (n= 475) and 0.63 (n= 235) in the two independent populations. Both the Combined Clinical and Pharmacogenetic Predictive Test and the Pharmacogenetic Predictive Test were significantly more accurate than the Clinical Predictive Test (AUROC between 0.44 and 0.55) in each of the populations.
Conclusion
Our finding that genetic polymorphisms with a clinical trait are associated with BDR suggests that there is promise in using multiple genetic polymorphisms simultaneously to predict which asthmatics are likely to respond poorly to bronchodilators.
doi:10.1097/FPC.0b013e32833428d0
PMCID: PMC3654515  PMID: 20032818
asthma; bronchodilator response; personalized medicine; pharmacogenetic test; predictive medicine
3.  Chromosome 17: Association of a large inversion polymorphism with corticosteroid response in asthma 
Pharmacogenetics and genomics  2008;18(8):733-737.
A 900-KB inversion exists within a large region of conserved linkage disequilibrium (LD) on chromosome 17. CRHR1 is located within the inversion region and associated with inhaled corticosteroid response in asthma. We hypothesized that CRHR1 variants are in LD with the inversion, supporting a potential role for natural selection in the genetic response to corticosteroids. We genotyped 6 single nucleotide polymorphisms (SNPs) spanning chr17:40,410,565–42,372,240, including 4 SNPs defining inversion status. Similar allele frequencies and strong LD were noted between the inversion and a CRHR1 SNP previously associated with lung function response to inhaled corticosteroids. Each inversion-defining SNP was strongly associated with inhaled corticosteroid response in adult asthma (p-values 0.002–0.005). The CRHR1 response to inhaled corticosteroids may thus be explained by natural selection resulting from inversion status or by long-range LD with another gene. Additional pharmacogenetic investigations into to regions of chromosomal diversity, including copy number variation and inversions, are warranted.
doi:10.1097/FPC.0b013e3282fe6ebf
PMCID: PMC3225071  PMID: 18622266
CRHR1; tau haplotype; MAPT; inversion; asthma; corticosteroid; pharmacogenetics
4.  Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma 
Pharmacogenetics and genomics  2008;18(5):373-382.
Objective
Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.
Methods
We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers.
Results
Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts.
Conclusion
We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
doi:10.1097/FPC.0b013e3282fa760a
PMCID: PMC3208318  PMID: 18408560
Asthma; genetics; corticotrophin releasing hormone receptor 2; CRHR2; bronchodilator response; polymorphism; β2 adrenergic receptor agonist
5.  A Polymorphism of GRK5 Alters Agonist-Promoted Desensitization of β2-Adrenergic Receptors 
Pharmacogenetics and genomics  2008;18(8):729-732.
β-agonist treatment of asthma displays substantial interindividual variation, which has prompted polymorphism discovery and characterization of β2-adrenergic (β2AR) signaling genes. β2AR function undergoes desensitization during persistent agonist exposure due to receptor phosphorylation by G-protein coupled receptor kinases (GRKs). GRK5 was found to be highly expressed in airway smooth muscle, the tissue target for β-agonists. The coding region is polymorphic at codon 41, where Gln can be substituted by Leu (minor allele), but almost exclusively in those of African descent. In transfected cells, GRK5-Leu41 evoked a greater degree of agonist-promoted desensitization of adenylyl cyclase compared to GRK5-Gln41. Consistent with this functional effect, agonist-promoted β2AR phosphorylation was greater in cells expressing GRK5-Leu41, as was the rate of agonist-promoted receptor internalization. In studies with mutated β2AR lacking PKA-phosphorylation sites, this phenotype was confirmed as being GRK-specific. So, GRK5-Leu41 represents a gain-of-function polymorphism that evokes enhanced loss-of-function of β2AR during persistent agonist exposure, and thus may contribute to β-agonist variability in asthma treatment of African-Americans.
doi:10.1097/FPC.0b013e32830967e9
PMCID: PMC2699179  PMID: 18622265
Polymorphism; tachyphylaxis; β-agonist; kinases; desensitization; asthma

Results 1-5 (5)