PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Modulation of Lgl1 by steroid, retinoic acid, and Vitamin D models complex transcriptional regulation during alveolarization 
Pediatric research  2010;67(4):375-381.
Alveolarization depends on circulating glucocorticoid (GC), retinoid (RA) and Vitamin D (VitD). Bronchopulmonary dysplasia (BPD), a leading cause of neonatal morbidity, is associated with arrested alveolarization. In hyperoxia-exposed rats displaying features of BPD, reduced levels of Lgl1 normalize during recovery. We show that GC (100nM) stimulates (7–115 fold) and VitD (100µM) suppresses (2 fold) Lgl1 expression. RA (all trans/9-cis, 10µM) effects are biphasic. From postnatal (PN) days 7–10, RA was stimulatory (2 fold) at 24h, after which effects were inhibitory (3–15 fold). Lgl1 promoter-luciferase reporter assays confirmed that these agents operated at the transcriptional level. Interestingly, the individual inhibitory effects of VitD and RA on GC induction of Lgl1 were abrogated when both agents were present, suggesting that steric hindrance may influence promoter accessibility. Analysis of the proximity (<50 base pairs) of binding sites for overlapping VitD and RA receptors to that of the GC receptor identified 81% of promoters in 66 genes (including Lgl1) important in human lung development compared to 48% in a random set of 1000 genes. Complex integration of the effects of GC, RA, and VitD on gene expression in the postnatal lung is likely to contribute to the timely advance of alveolarization without attendant inflammation.
doi:10.1203/PDR.0b013e3181d23656
PMCID: PMC3104505  PMID: 20057335
2.  Nuclear Factor Kappa B Activation in Human Cord Blood Mononuclear Cells 
Pediatric research  2004;56(2):212-218.
The immunologic signals participating in immune responses early in life have not been completely elucidated. Regarding the characterization of neonatal cells, little is known concerning the activity of transcription factor nuclear factor kappa B (NF-κB), which regulates inflammatory genes and cytokine production. The aim of this study was to characterize NF-κB activation in cord blood mononuclear cells (CBMC). We analyzed the potential association of NF-κB activity with lymphocyte proliferation and influences on cytokine secretion in the early immune system. To determine the contribution of a disease whereby inheritance may impact neonatal immunity, we assessed the influence of maternal allergic disease on NF-κB regulation and cytokine secretion. CBMC from healthy newborns were isolated and stimulated with mitogen (n = 28). Nuclear extracts were analyzed by electrophoretic mobility shift assay, cytokine secretion by ELISA. FISH analysis excluded relevant maternal contamination of CBMC. All samples showed a positive lymphoproliferative response, and NF-κB activity was both increased and decreased after mitogen stimulation. Increased NF-κB activation was significantly associated with decreased TNF-α secretion (median 6.1 versus 50.3 pg/mL) in unstimulated CBMC. Mitogen stimulation resulted in increased NF-κB activity with a trend to increased IL-13 production. Maternal allergic disease was associated with higher TNF-α (median 982 versus 173 pg/mL) and IL-13 secretion (median 1328 versus 1120 pg/mL) after mitogen stimulation. Together, NF-κB activity is differentially activated in cord blood and associated with a distinct cytokine pattern. Whether differential NF-κB activity in cord blood is related to the subsequent development of immune diseases requires further investigation.
doi:10.1203/01.PDR.0000132850.33375.D0
PMCID: PMC1488728  PMID: 15181194
CBMC, cord blood mononuclear cells; EMSA, electrophoretic mobility shift assay; IFN-γ, interferon gamma; NF-κB, nuclear factor kappa B; PHA, phytohemagglutinin; SI, stimulation index; Th, T helper; TNF-α, tumor necrosis factor alpha

Results 1-2 (2)