PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Thymic Stromal Lymphopoietin Gene Promoter Polymorphisms Are Associated with Susceptibility to Bronchial Asthma 
Thymic stromal lymphopoietin (TSLP) triggers dendritic cell–mediated T helper (Th) 2 inflammatory responses. A single-nucleotide polymorphism (SNP), rs3806933, in the promoter region of the TSLP gene creates a binding site for the transcription factor activating protein (AP)–1. The variant enhances AP-1 binding to the regulatory element, and increases the promoter–reporter activity of TSLP in response to polyinosinic-polycytidylic acid (poly[I:C]) stimulation in normal human bronchial epithelium (NHBE). We investigated whether polymorphisms including the SNP rs3806933 could affect the susceptibility to and clinical phenotypes of bronchial asthma. We selected three representative (i.e., Tag) SNPs and conducted association studies of the TSLP gene, using two independent populations (639 patients with childhood atopic asthma and 838 control subjects, and 641 patients with adult asthma and 376 control subjects, respectively). We further examined the effects of corticosteroids and a long-acting β2-agonist (salmeterol) on the expression levels of the TSLP gene in response to poly(I:C) in NHBE. We found that the promoter polymorphisms rs3806933 and rs2289276 were significantly associated with disease susceptibility in both childhood atopic and adult asthma. The functional SNP rs3806933 was associated with asthma (meta-analysis, P = 0.000056; odds ratio, 1.29; 95% confidence interval, 1.14–1.47). A genotype of rs2289278 was correlated with pulmonary function. Moreover, the induction of TSLP mRNA and protein expression induced by poly(I:C) in NHBE was synergistically impaired by a corticosteroid and salmeterol. TSLP variants are significantly associated with bronchial asthma and pulmonary function. Thus, TSLP may serve as a therapeutic target molecule for combination therapy.
doi:10.1165/rcmb.2009-0418OC
PMCID: PMC3159073  PMID: 20656951
asthma; TSLP; bronchial epithelial cells; combination therapy; genetic polymorphisms
2.  Genetic Influences on Asthma Susceptibility in the Developing Lung 
Asthma is the leading serious pediatric chronic illness in the United States, affecting 7.1 million children. The prevalence of asthma in children under 4 years of age has increased dramatically in the last 2 decades. Existing evidence suggests that this increase in prevalence derives from early environmental exposures acting on a pre-existing asthma-susceptible genotype. We studied the origins of asthma susceptibility in developing lung in rat strains that model the distinct phenotypes of airway hyperresponsiveness (Fisher rats) and atopy (brown Norway [BN] rats). Postnatal BN rat lungs showed increased epithelial proliferation and tracheal goblet cell hyperplasia. Fisher pups showed increased lung resistance at age 2 weeks, with elevated neutrophils throughout the postnatal period. Diverse transcriptomic signatures characterized the distinct respiratory phenotypes of developing lung in both rat models. Linear regression across age and strain identified developmental variation in expression of 1,376 genes, and confirmed both strain and temporal regulation of lung gene expression. Biological processes that were heavily represented included growth and development (including the T Box 1 transcription factor [Tbx5], the epidermal growth factor receptor [Egfr], the transforming growth factor beta-1-induced transcript 1 [Tgfbr1i1]), extracellular matrix and cell adhesion (including collagen and integrin genes), and immune function (including lymphocyte antigen 6 (Ly6) subunits, IL-17b, Toll-interacting protein, and Ficolin B). Genes validated by quantitative RT-PCR and protein analysis included collagen III alpha 1 Col3a1, Ly6b, glucocorticoid receptor and Importin-13 (specific to the BN rat lung), and Serpina1 and Ficolin B (specific to the Fisher lung). Innate differences in patterns of gene expression in developing lung that contribute to individual variation in respiratory phenotype are likely to contribute to the pathogenesis of asthma.
doi:10.1165/rcmb.2009-0412OC
PMCID: PMC3159089  PMID: 20118217
asthma susceptibility; lung development; developmental gene expression
3.  A Functional Mutation in the Terminal Exon of Elastin in Severe, Early-Onset Chronic Obstructive Pulmonary Disease 
We describe a novel variant in the terminal exon of human elastin, c.2318 G>A, resulting in an amino acid substitution of glycine 773 to aspartate (G773D) in a pedigree with severe early-onset chronic obstructive pulmonary disease (COPD). Transfection studies with elastin cDNAs demonstrate that the glycine to aspartate change compromises the ability of the mutant protein to undergo normal elastin assembly. Other functional consequences of this amino acid substitution include altered proteolytic susceptibility of the C-terminal region of elastin and reduced interaction of the exon 36 sequence with matrix receptors on cells. These results suggest that the G773D variant confers structural and functional consequences relevant to the pathogenesis of COPD.
doi:10.1165/rcmb.2005-0206OC
PMCID: PMC2715343  PMID: 16081882
chronic obstructive pulmonary disease; elastin; extracellular matrix; genetics; mutation
4.  Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations 
Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or qualitative COPD-related phenotypes were found for the tumor necrosis factor (TNF)-α −308G>A promoter polymorphism (P < 0.02), a coding variant in surfactant protein B (SFTPB Thr131Ile) (P = 0.03), and the (GT)31 allele of the heme oxygenase (HMOX1) promoter short tandem repeat (P = 0.02). In the case-control study, the SFTPB Thr131Ile polymorphism was associated with COPD, but only in the presence of a gene-by-environment interaction term (P = 0.01 for both main effect and interaction). The 30-repeat, but not the 31-repeat, allele of HMOX1 was associated (P = 0.04). The TNF −308G>A polymorphism was not significant. In addition, the microsomal epoxide hydrolase “fast” allele (EPHX1 His139Arg) was significantly associated in the case-control study (P = 0.03). Although some evidence for replication was found for SFTPB and HMOX1, none of the previously published COPD genetic associations was convincingly replicated across both study designs.
doi:10.1165/rcmb.2005-0073OC
PMCID: PMC2715305  PMID: 15817713
association studies; case-control studies; emphysema; genetics; single nucleotide polymorphism

Results 1-4 (4)