Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
1.  A Genome Wide Association Study of Plasma Total IgE Concentration in the Framingham Heart Study 
Atopy and plasma IgE concentration are genetically complex traits, and the specific genetic risk factors that lead to IgE dysregulation and clinical atopy are an area of active investigation.
To ascertain the genetic risk factors which lead to IgE dysregulation.
A genome wide association study (GWAS) was performed in 6,819 participants from the Framingham Heart Study (FHS). Seventy of the top SNPs were selected based on p-values and linkage disequilibrium among neighboring SNPs and evaluated in a meta-analysis with five independent populations from the KORA, B58C, and CAMP cohorts.
Thirteen SNPs located in the region of three genes, FCER1A, STAT6, and IL-13, were found to have genome-wide significance in the FHS GWAS. The most significant SNPs from the three regions were rs2251746 (FCER1A, p-value 2.11×10-12), rs1059513 (STAT6, p-value 2.87×10-08), and rs1295686 (IL-13, p-value 3.55×10-08). Four additional gene regions - HLA-G, HLA-DQA2, HLA-A, and DARC - reached genome-wide statistical significance in meta-analysis combining FHS and replication cohorts, although the DARC association did not appear independent of SNPs in the nearby FCER1A gene.
This GWAS of the FHS has identified genetic loci in HLA genes that may have a role in the pathogenesis of IgE dysregulation and atopy. It also confirmed the association of known susceptibility loci, FCER1A, STAT6, and IL-13, for the dysregulation of total IgE.
PMCID: PMC3293994  PMID: 22075330
total IgE; atopy; asthma; GWAS
3.  TSLP Polymorphisms are Associated with Asthma in a Sex-Specific Fashion 
Allergy  2010;65(12):1566-1575.
Single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) have been associated with IgE (in girls) and asthma (in general). We sought to determine whether TSLP SNPs are associated with asthma in a sex-specific fashion.
We conducted regular and sex-stratified analyses of association between SNPs in TSLP and asthma in families of asthmatic children in Costa Rica. Significant findings were replicated in white and African-American participants in the Childhood Asthma Management Program, in African Americans in the Genomic Research on Asthma in the African Diaspora study, in whites and Hispanics in the Children’s Health Study, and in whites in the Framingham Heart Study (FHS).
Main Results
Two SNPs in TSLP (rs1837253 and rs2289276) were significantly associated with a reduced risk of asthma in combined analyses of all cohorts (p values of 2×10−5 and 1×10−5, respectively). In a sex-stratified analysis, the T allele of rs1837253 was significantly associated with a reduced risk of asthma in males only (p= 3×10−6). Alternately, the T allele of rs2289276 was significantly associated with a reduced risk of asthma in females only (p= 2×10−4). Findings for rs2289276 were consistent in all cohorts except the FHS.
TSLP variants are associated with asthma in a sex-specific fashion.
PMCID: PMC2970693  PMID: 20560908
asthma; genetic association; sex-specific; thymic stromal lymphopoietin; TSLP
4.  On the Analysis of Genome-Wide Association Studies in Family-Based Designs: A Universal, Robust Analysis Approach and an Application to Four Genome-Wide Association Studies 
PLoS Genetics  2009;5(11):e1000741.
For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4 genome-wide association studies.
Author Summary
In genome-wide association studies, the multiple testing problem and confounding due to population stratification have been intractable issues. Family-based designs have considered only the transmission of genotypes from founder to nonfounder to prevent sensitivity to the population stratification, which leads to the loss of information. Here we propose a novel analysis approach that combines mutually independent FBAT and screening statistics in a robust way. The proposed method is more powerful than any other, while it preserves the complete robustness of family-based association tests, which only achieves much smaller power level. Furthermore, the proposed method is virtually as powerful as population-based approaches/designs, even in the absence of population stratification. By nature of the proposed method, it is always robust as long as FBAT is valid, and the proposed method achieves the optimal efficiency if our linear model for screening test reasonably explains the observed data in terms of covariance structure and population admixture. We illustrate the practical relevance of the approach by an application in 4 genome-wide association studies.
PMCID: PMC2777973  PMID: 19956679
5.  A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study 
PLoS Genetics  2009;5(3):e1000429.
The ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV1/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV1/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV1/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV1/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV1 and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV1/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation.
Author Summary
Cigarette smoking is the primary risk factor for impaired lung function, yet only 20% of smokers develop chronic obstructive pulmonary disease (COPD). This observation, along with family studies of lung function and COPD, suggests that genetic factors influence susceptibility to cigarette smoke. We examined the relationship between common genetic variants and measures of lung function in a sample of 7,691 participants from the Framingham Heart Study and confirmed our observations in 835 participants from the Family Heart Study selected to include cases of airflow obstruction. We identified a variant on chromosome 4 that was strongly associated with FEV1/FVC in the Framingham Study and confirmed the association in the Family Heart Study. The accompanying manuscript identified the same region to be associated with COPD. Several interesting genes are present in the region that we identified, including a gene (HHIP) interacting with a biological pathway involved in lung development, but it is not yet clear which gene in the region explains the association. Our results identified a region of chromosome 4 that warrants further study to understand the genetic effects influencing lung function.
PMCID: PMC2652834  PMID: 19300500

Results 1-5 (5)