Search tips
Search criteria

Results 1-25 (93)

Clipboard (0)
more »
Year of Publication
more »
1.  Glucocorticoid Receptor Hetero-Complex Gene STIP1 Is Associated with Improved Lung Function in Asthmatics Treated with Inhaled Corticosteroids 
Corticosteroids exert their anti-inflammatory action by binding and activating the intracellular the glucocorticoid receptor (GR) hetero-complex.
Evaluate the genes HSPCB, HSPCA, STIP1, HSPA8, DNAJB1, PTGES3, FKBP5, and FKBP4 on corticosteroid response.
Caucasian asthmatics (382) randomized to once daily flunisolide or conventional inhaled corticosteroid therapy were genotyped. Outcome measures were baseline FEV1, % predicted FEV1, and % change in FEV1 after corticosteroid treatment. Multivariable analyses adjusted for age, gender, and height, were performed fitting the most appropriate genetic model based on quantitative mean derived from ANOVA models to determine if there was an independent effect of polymorphisms on change in FEV1 independent of baseline level.
Positive recessive model correlations for STIP1 SNPs were observed for baseline FEV1 [rs4980524, p=0.009; rs6591838, p=0.0045; rs2236647, p=0.002; and rs2236648; p=0.013], baseline % predicted FEV1 [rs4980524, p=0.002; rs6591838, p=0.017; rs2236647, p=0.003; and rs2236648; p=0.008] ; % change in FEV1 at 4 weeks [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01] and 8 weeks therapy [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01]. Haplotypic associations were observed for baseline FEV1 and % change in FEV1 at 4 weeks therapy [p=0.05 and p=0.01, respectively]. Significant trends towards association were observed for baseline % predicted FEV1 and % change in FEV1 at 8 weeks therapy. Positive correlations between haplotypes and % change in FEV1 were also observed.
STIP1 genetic variations may play a role in regulating corticosteroid response in asthmatics with reduced lung function. Replication in a second asthma population is required to confirm these observations.
Clinical Implications
Identifying genes that regulate corticosteroid responses could allow a priori determination of individual responses to corticosteroid therapy, leading to more effective dosing and/or selection of drug therapies for treating asthma.
PMCID: PMC4317788  PMID: 19254810
corticosteroid; pharmacogenetics; glucocorticoid receptor; SNP; heat shock protein; heat shock organizing protein; immunophilin
3.  Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma 
Nature Communications  2015;6:5965.
Common variants at many loci have been robustly associated with asthma but explain little of the overall genetic risk. Here we investigate the role of rare (<1%) and low-frequency (1–5%) variants using the Illumina HumanExome BeadChip array in 4,794 asthma cases, 4,707 non-asthmatic controls and 590 case–parent trios representing European Americans, African Americans/African Caribbeans and Latinos. Our study reveals one low-frequency missense mutation in the GRASP gene that is associated with asthma in the Latino sample (P=4.31 × 10−6; OR=1.25; MAF=1.21%) and two genes harbouring functional variants that are associated with asthma in a gene-based analysis: GSDMB at the 17q12–21 asthma locus in the Latino and combined samples (P=7.81 × 10−8 and 4.09 × 10−8, respectively) and MTHFR in the African ancestry sample (P=1.72 × 10−6). Our results suggest that associations with rare and low-frequency variants are ethnic specific and not likely to explain a significant proportion of the ‘missing heritability’ of asthma.
Common variants account for only a small amount of the heritable risk for developing asthma. Using a meta-analysis approach, Igartua et al. identify one low-frequency missense mutation and two genes with functional variants that are associated with asthma, but only in specific ethnic groups.
PMCID: PMC4309441  PMID: 25591454
4.  CD11a polymorphisms regulate TH2 cell homing and TH2-related disease 
The Journal of allergy and clinical immunology  2013;133(1):10.1016/j.jaci.2013.03.049.
TH2-dependent diseases vary in severity according to genotype, but relevant gene polymorphisms remain largely unknown. The integrin CD11a is a critical determinant of allergic responses, and allelic variants of this gene might influence allergic phenotypes.
We sought to determine major CD11a allelic variants in mice and human subjects and their importance to allergic disease expression.
We sequenced mouse CD11a alleles from C57BL/6 and BALB/c strains to identify major polymorphisms; human CD11a single nucleotide polymorphisms were compared with allergic disease phenotypes as part of the international HapMap project. Mice on a BALB/c or C57BL/6 background and congenic for the other strain's CD11a allele were created to determine the importance of mouse CD11a polymorphisms in vivo and in vitro.
Compared with the C57BL/6 allele, the BALB/c CD11a allele contained a nonsynonymous change from asparagine to aspartic acid within the metal ion binding domain. In general, the BALB/c CD11a allele enhanced and the C57BL/6 CD11a allele suppressed TH2 cell–dependent disease caused by the parasite Leishmania major and allergic lung disease caused by the fungus Aspergillus niger. Relative to the C57BL/6 CD11a allele, the BALB/c CD11a allele conferred both greater T-cell adhesion to CD54 in vitro and enhanced TH2 cell homing to lungs in vivo. We further identified a human CD11a polymorphism that significantly associated with atopic disease and relevant allergic indices.
Polymorphisms in CD11a critically influence TH2 cell homing and diverse TH2-dependent immunopathologic states in mice and potentially influence the expression of human allergic disease.
PMCID: PMC3842370  PMID: 23726040
Asthma; allergic disease; CD11a; TH2 cell; homing; polymorphism; allele; congenic; biomarker
5.  Statin Exposure Is Associated with Decreased Asthma-related Emergency Department Visits and Oral Corticosteroid Use 
Rationale: Statins, or HMG-CoA reductase inhibitors, may aid in the treatment of asthma through their pleiotropic antiinflammatory effects.
Objectives: To examine the effect of statin therapy on asthma-related exacerbations using a large population-based cohort.
Methods: Statin users aged 31 years or greater with asthma were identified from the Population-Based Effectiveness in Asthma and Lung population, which includes data from five health plans. Statin exposure and asthma exacerbations were assessed over a 24-month observation period. Statin users with a statin medication possession ratio greater than or equal to 80% were matched to non–statin users by age, baseline asthma therapy, site of enrollment, season at baseline, and propensity score, which was calculated based on patient demographics and Deyo-Charlson conditions. Asthma exacerbations were defined as two or more oral corticosteroid dispensings, asthma-related emergency department visits, or asthma-related hospitalizations. The association between statin exposure and each of the three outcome measures was assessed using conditional logistic regression.
Measurements and Main Results: Of the 14,566 statin users, 8,349 statin users were matched to a nonuser. After adjusting for Deyo-Charlson conditions that remained unbalanced after matching, among statin users, statin exposure was associated with decreased odds of having asthma-related emergency department visits (odds ratio [OR], 0.64; 95% confidence interval [CI], 0.53–0.77; P < 0.0001) and two or more oral corticosteroid dispensings (OR, 0.90; 95% CI, 0.81–0.99; P = 0.04). There were no differences in asthma-related hospitalizations (OR, 0.91; 95% CI, 0.66–1.24; P = 0.52).
Conclusions: Among statin users with asthma, statin exposure was associated with decreased odds of asthma-related emergency department visits and oral corticosteroid dispensings.
PMCID: PMC3863744  PMID: 24093599
HMG-CoA reductase inhibitors; asthma therapy; exacerbations
7.  Diagnostic accuracy of the bronchodilator response in children 
The bronchodilator response (BDR) reflects the reversibility of airflow obstruction and is recommended as an adjunctive test to diagnose asthma. The validity of the commonly used definition of BDR, a 12% or greater change in FEV1 from baseline, has been questioned in childhood.
We sought to examine the diagnostic accuracy of the BDR test by using 3 large pediatric cohorts.
Cases include 1041 children with mild-to-moderate asthma from the Childhood Asthma Management Program.
Control subjects (nonasthmatic and nonwheezing) were chosen from Project Viva and Home Allergens, 2 population-based pediatric cohorts. Receiver operating characteristic curves were constructed, and areas under the curve were calculated for different BDR cutoffs.
A total of 1041 cases (59.7% male; mean age, 8.9 ± 2.1 years) and 250 control subjects (46.8% male; mean age, 8.7 ± 1.7 years) were analyzed, with mean BDRs of 10.7% ± 10.2% and 2.7% ± 8.4%, respectively. The BDR test differentiated asthmatic patients from nonasthmatic patients with a moderate accuracy (area under the curve, 73.3%).
Despite good specificity, a cutoff of 12% was associated with poor sensitivity (35.6%). A cutoff of less than 8% performed significantly better than a cutoff of 12% (P = .03, 8% vs 12%).
Our findings highlight the poor sensitivity associated with the commonly used 12% cutoff for BDR. Although our data show that a threshold of less than 8% performs better than 12%, given the variability of this test in children, we conclude that it might be not be appropriate to choose a specific BDR cutoff as a criterion for the diagnosis of asthma.
PMCID: PMC3759549  PMID: 23683464
Asthma; bronchodilator response; diagnosis
8.  A genome-wide association study of bronchodilator response in asthmatics 
The pharmacogenomics journal  2013;14(1):41-47.
Reversibility of airway obstruction in response to β2-agonists is highly variable among asthmatics, which is partially attributed to genetic factors. In a genome-wide association study of acute bronchodilator response (BDR) to inhaled albuterol, 534,290 single nucleotide polymorphisms (SNPs) were tested in 403 white trios from the Childhood Asthma Management Program using five statistical models to determine the most robust genetic associations. The primary replication phase included 1397 polymorphisms in three asthma trials (pooled n=764). The second replication phase tested 13 SNPs in three additional asthma populations (n=241, n=215, and n=592). An intergenic SNP on chromosome 10, rs11252394, proximal to several excellent biological candidates, significantly replicated (p=1.98×10−7) in the primary replication trials. An intronic SNP (rs6988229) in the collagen (COL22A1) locus also provided strong replication signals (p=8.51×10−6). This study applied a robust approach for testing the genetic basis of BDR and identified novel loci associated with this drug response in asthmatics.
PMCID: PMC3706515  PMID: 23508266
pharmacogenetics; asthma; bronchodilator response; genome-wide association study; albuterol
9.  RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells 
PLoS ONE  2014;9(6):e99625.
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone—a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM.
PMCID: PMC4057123  PMID: 24926665
10.  CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data 
PLoS Computational Biology  2014;10(6):e1003676.
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at
PMCID: PMC4055564  PMID: 24922310
11.  Classification of childhood asthma phenotypes and long-term clinical responses to inhaled anti-inflammatory medications 
Although recent studies have identified the presence of phenotypic clusters in asthmatic patients, the clinical significance and temporal stability of these clusters have not been explored.
Our aim was to examine the clinical relevance and temporal stability of phenotypic clusters in children with asthma.
We applied spectral clustering to clinical data from 1041 children with asthma participating in the Childhood Asthma Management Program. Posttreatment randomization follow-up data collected over 48 months were used to determine the effect of these clusters on pulmonary function and treatment response to inhaled anti-inflammatory medication.
We found 5 reproducible patient clusters that could be differentiated on the basis of 3 groups of features: atopic burden, degree of airway obstruction, and history of exacerbation. Cluster grouping predicted long-term asthma control, as measured by the need for oral prednisone (P < .0001) or additional controller medications (P = .001), as well as longitudinal differences in pulmonary function (P < .0001). We also found that the 2 clusters with the highest rates of exacerbation had different responses to inhaled corticosteroids when compared with the other clusters. One cluster demonstrated a positive response to both budesonide (P = .02) and nedocromil (P = .01) compared with placebo, whereas the other cluster demonstrated minimal responses to both budesonide (P = .12) and nedocromil (P = .56) compared with placebo.
Phenotypic clustering can be used to identify longitudinally consistent and clinically relevant patient subgroups, with implications for targeted therapeutic strategies and clinical trials design.
PMCID: PMC4047642  PMID: 24892144
Childhood asthma; asthma phenotypes; inhaled corticosteroids; cluster analysis; asthma classification; longitudinal study
12.  Germline Variants and Advanced Colorectal Adenomas: Adenoma Prevention with Celecoxib Trial Genomewide Association Study 
Identification of single nucleotide polymorphisms (SNPs) associated with development of advanced colorectal adenomas.
Experimental Design
Discovery Phase: 1,406 Caucasian patients (139 advanced adenoma cases and 1,267 controls) from the Adenoma Prevention with Celecoxib (APC) trial were included in a genome-wide association study (GWAS) to identify variants associated with post-polypectomy disease recurrence. Genome-wide significance was defined as false discovery rate < 0.05, unadjusted p=7.4×10−7. Validation Phase: Results were further evaluated using 4,175 familial colorectal adenoma or CRC cases and 5,036 controls from patients of European ancestry (COloRectal Gene Identification consortium, Scotland, Australia and VQ58).
Our study identified eight SNPs associated with advanced adenoma risk in the APC trial (rs2837156, rs7278863, rs2837237, rs2837241, rs2837254, rs741864 at 21q22.2, and rs1381392 and rs17651822 at 3p24.1, at p<10–7 level with odds ratio – OR>2). Five variants in strong pairwise linkage disequilbrium (rs7278863, rs2837237, rs741864, rs741864 and rs2837241, r2=0.8–1) are in or near the coding region for the tight junction adhesion protein, IGSF5. An additional variant associated with advanced adenomas, rs1535989 (minor allele frequency 0.11; OR 2.09; 95% confidence interval 1.50–2.91), also predicted CRC development in a validation analysis (p=0.019) using a series of adenoma cases or CRC (CORGI study) and 3 sets of CRC cases and controls (Scotland, VQ58 and Australia, N=9,211).
Our results suggest that common polymorphisms contribute to the risk of developing advanced adenomas and might also contribute to the risk of developing CRC. The variant at rs1535989 may identify patients whose risk for neoplasia warrants increased colonoscopic surveillance.
PMCID: PMC4037290  PMID: 24084763
Colorectal adenomas; colorectal cancer screening; genetic predisposition
13.  A Meta-analysis of Genome-wide Association Studies for Serum Total IgE in Diverse Study Populations 
Immunoglobulin E (IgE) is both a marker and mediator of allergic inflammation. Despite reported differences in serum total IgE levels by race-ethnicity, African American and Latino individuals have not been well represented in genetic studies of total IgE.
To identify the genetic predictors of serum total IgE levels.
We used genome wide association (GWA) data from 4,292 individuals (2,469 African Americans, 1,564 European Americans, and 259 Latinos) in the EVE Asthma Genetics Consortium. Tests for association were performed within each cohort by race-ethnic group (i.e., African American, Latino, and European American) and asthma status. The resulting p-values were meta-analyzed accounting for sample size and direction of effect. Top single nucleotide polymorphism (SNP) associations from the meta-analysis were reassessed in six additional cohorts comprising 5,767 individuals.
We identified 10 unique regions where the combined association statistic was associated with total serum IgE levels (P-value <5.0×10−6) and the minor allele frequency was ≥5% in two or more population groups. Variant rs9469220, corresponding to HLA-DQB1, was the most significantly associated SNP with serum total IgE levels when assessed in both the replication cohorts and the discovery and replication sets combined (P-value = 0.007 and 2.45×10−7, respectively). In addition, findings from earlier GWA studies were also validated in the current meta-analysis.
This meta-analysis independently identified a variant near HLA-DQB1 as a predictor of total serum IgE in multiple race-ethnic groups. This study also extends and confirms the findings of earlier GWA analyses in African American and Latino individuals.
PMCID: PMC3596497  PMID: 23146381
meta-analysis; genome wide association study; total immunoglobulin E; race-ethnicity; continental population groups
14.  Further Replication Studies of the EVE Consortium Meta-Analysis Identifies Two Asthma Risk Loci in European Americans 
Genome-wide association studies of asthma have implicated many genetic risk factors, with well-replicated associations at approximately 10 loci that account for only a small proportion of the genetic risk.
We aimed to identify additional asthma risk loci by performing an extensive replication study of the results from the EVE Consortium meta-analysis.
We selected 3186 SNPs for replication based on the p-values from the EVE Consortium meta-analysis. These SNPs were genotyped in ethnically diverse replication samples from nine different studies, totaling to 7202 cases, 6426 controls, and 507 case-parent trios. Association analyses were conducted within each participating study and the resulting test statistics were combined in a meta-analysis.
Two novel associations were replicated in European Americans: rs1061477 in the KLK3 gene on chromosome 19 (combined OR = 1.18; 95% CI 1.10 – 1.25) and rs9570077 (combined OR =1.20 95% CI 1.12–1.29) on chromosome 13q21. We could not replicate any additional associations in the African American or Latino individuals.
This extended replication study identified two additional asthma risk loci in populations of European descent. The absence of additional loci for African Americans and Latino individuals highlights the difficulty in replicating associations in admixed populations.
PMCID: PMC3666859  PMID: 23040885
Asthma; genetic risk factors; meta-analysis; KLK3
15.  Very important pharmacogene summary for VDR 
Pharmacogenetics and genomics  2012;22(10):758-763.
PMCID: PMC3678550  PMID: 22588316
drug response; genetic variants; pharmacogenomics; vitamin D receptor
16.  Effect of Vitamin D and Inhaled Corticosteroid Treatment on Lung Function in Children 
Rationale: Low vitamin D levels are associated with asthma and decreased airway responsiveness. Treatment with inhaled corticosteroids improves airway responsiveness and asthma control.
Objectives: To assess the effect of vitamin D levels on prebronchodilator FEV1, bronchodilator response, and responsiveness to methacholine (PC20, provocative concentration of methacholine producing a 20% decline in FEV1) in patients with asthma treated with inhaled corticosteroids.
Methods: We measured 25-hydroxyvitamin D levels in the serum of children with persistent asthma at the time of enrollment in the Childhood Asthma Management Program. We divided subjects into the vitamin D sufficiency (>30 ng/ml), insufficiency (20–30 ng/ml), and deficiency (<20 ng/ml) groups. Covariates included age, treatment, sex, body mass index, race, history of emergency department visits, hospitalizations, and season that vitamin D specimen was drawn. Our main outcome measures were change in prebronchodilator FEV1, bronchodilator response, and PC20 from enrollment to 8–12 months.
Measurements and Main Results: Of the 1,024 subjects, 663 (65%) were vitamin D sufficient, 260 (25%) were insufficient, and 101 (10%) were deficient. Vitamin D–deficient subjects were more likely to be older, African American, and have a higher body mass index compared with the vitamin D–sufficient and insufficient subjects. In the inhaled corticosteroid treatment group, prebronchodilator FEV1 increased from randomization to 12 months by 140 ml in the vitamin D–deficient group and prebronchodilator FEV1 increased by 330 ml in the vitamin D insufficiency group and by 290 ml in the vitamin D sufficiency group (P = 0.0072), in adjusted models.
Conclusions: In children with asthma treated with inhaled corticosteroids, vitamin D deficiency is associated with poorer lung function than in children with vitamin D insufficiency or sufficiency.
PMCID: PMC3480528  PMID: 22798322
asthma; vitamin D; lung function; forced expiratory volume; children
17.  Genome-wide association analysis of circulating vitamin D levels in children with asthma 
Human genetics  2012;131(9):1495-1505.
Vitamin D deficiency is becoming more apparent in many populations. Genetic factors may play a role in the maintenance of vitamin D levels. The objective of this study was to perform a genome-wide analysis (GWAS) of vitamin D levels, including replication of prior GWAS results. We measured 25-hydroxyvitamin D (25(OH)D) levels in serum collected at the time of enrollment and at year 4 in 572 Caucasian children with asthma, who were part of a multi-center clinical trial, the Childhood Asthma Management Program. Replication was performed in a second cohort of 592 asthmatics from Costa Rica and a third cohort of 516 Puerto Rican asthmatics. In addition, we attempted replication of three SNPs that were previously identified in a large GWAS of Caucasian individuals. The setting included data from a clinical trial of childhood asthmatics and two cohorts of asthmatics recruited for genetic studies of asthma. The main outcome measure was circulating 25(OH)D levels. The 25(OH)D levels at the two time-points were only modestly correlated with each other (intraclass correlation coefficient = 0.33) in the CAMP population. We identified SNPs that were nominally associated with 25(OH)D levels at two time-points in CAMP, and replicated four SNPs in the Costa Rican cohort: rs11002969, rs163221, rs1678849, and rs4864976. However, these SNPs were not significantly associated with 25(OH)D levels in a third population of Puerto Rican asthmatics. We were able to replicate the SNP with the strongest effect, previously reported in a large GWAS: rs2282679 (GC), and we were able to replicate another SNP, rs10741657 (CYP2R1), to a lesser degree. We were able to replicate two of three prior significant findings in a GWAS of 25(OH)D levels. Other SNPs may be additionally associated with 25(OH)D levels in certain populations.
PMCID: PMC3648789  PMID: 22673963
18.  Key findings and clinical implications from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study 
Patients with severe or difficult-to-treat asthma are an understudied population but account for considerable asthma morbidity, mortality, and costs. The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study was a large, 3-year, multicenter, observational cohort study of 4756 patients (n = 3489 adults ≥18 years of age, n = 497 adolescents 13-17 years of age, and n = 770 children 6-12 years of age) with severe or difficult-to-treat asthma. TENOR's primary objective was to characterize the natural history of disease in this cohort. Data assessed semiannually and annually included demographics, medical history, comorbidities, asthma control, asthma-related health care use, medication use, lung function, IgE levels, self-reported asthma triggers, and asthma-related quality of life. We highlight the key findings and clinical implications from more than 25 peer-reviewed TENOR publications. Regardless of age, patients with severe or difficult-to-treat asthma demonstrated high rates of health care use and substantial asthma burden despite receiving multiple long-term controller medications. Recent exacerbation history was the strongest predictor of future asthma exacerbations. Uncontrolled asthma, as defined by the 2007 National Heart, Lung, and Blood Institute guidelines’ impairment domain, was highly prevalent and predictive of future asthma exacerbations; this assessment can be used to identify high-risk patients. IgE and allergen sensitization played a role in the majority of severe or difficult-to-treat asthmatic patients.
PMCID: PMC3622643  PMID: 22694932
TENOR; severe or difficult-to-treat asthma; asthma control; asthma exacerbations; burden; medication; quality of life; allergy; IgE
19.  IL1B Polymorphisms Modulate Cystic Fibrosis Lung Disease 
Pediatric pulmonology  2009;44(6):580-593.
Rationale: Variability in pulmonary disease severity is found in patients with cystic fibrosis (CF) who have identical mutations in the CF transmembrane conductance regulator (CFTR) gene. We hypothesized that one factor accounting for heterogeneity in pulmonary disease severity is variation in the family of genes affecting the biology of interleukin-1 (IL-1), which impacts acquisition and maintenance of Pseudomonas aeruginosa infection in animal models of chronic infection. Methods: We genotyped 58 single nucleotide polymorphisms (SNPs) in the IL-1 gene cluster in 808 CF subjects from the University of North Carolina and Case Western Reserve University (UNC/CWRU) joint cohort. All were homozygous for ΔF508, and categories of “severe” (cases) or “mild” (control subjects) lung disease were defined by the lowest or highest quartile of forced expired volume (FEV1) for age in the CF population. After adjustment for age and gender, genotypic data were tested for association with lung disease severity. Odds ratios (ORs) comparing severe versus mild CF were also calculated for each genotype (with the homozygote major allele as the reference group) for all 58 SNPs. From these analyses, nine SNPs with a moderate effect size, OR ≤ 0.5or > 1.5, were selected for further testing. To replicate the case-control study results, we genotyped the same nine SNPs in a second population of CF parent-offspring trios (recruited from Children’s Hospital Boston), in which the offspring had similar pulmonary phenotypes. For the trio analysis, both family-based and population-based associations were performed. Results: SNPs rs1143634 and rs1143639 in the IL1B gene demonstrated a consistent association with lung disease severity categories (P < 0.10) and longitudinal analysis of lung disease severity (P < 0.10) in CF in both the case-control and family-based studies. In females, there was a consistent association (false discovery rate adjusted joint P-value < 0.06 for both SNPs) in both the analysis of lung disease severity in the UNC/CWRU cohort and the family-based analysis of affection status. Conclusion: Our findings suggest that IL1β is a clinically relevant modulator of CF lung disease.
PMCID: PMC3716579  PMID: 19431193
gene modifiers; cystic fibrosis; CFTR; IL-1 gene family
20.  IL10 Gene Polymorphisms Are Associated With Asthma Phenotypes in Children 
Genetic epidemiology  2004;26(2):155-165.
IL10 is an anti-inflammatory cytokine that has been found to have lower production in macrophages and mononuclear cells from asthmatics. Since reduced IL10 levels may influence the severity of asthma phenotypes, we examined IL10 single-nucleotide polymorphisms (SNPs) for association with asthma severity and allergy phenotypes as quantitative traits. Utilizing DNA samples from 518 Caucasian asthmatic children from the Childhood Asthma Management Program (CAMP) and their parents, we genotyped six IL10 SNPs: 3 in the promoter, 2 in introns, and one in the 3′ UTR. Using family-based association tests, each SNP was tested for association with asthma and allergy phenotypes individually. Population-based association analysis was performed with each SNP locus, the promoter haplotypes and the 6-loci haplotypes. The 3′ UTR SNP was significantly associated with FEV1 as a percent of predicted (FEV1PP) (P=0.0002) in both the family and population analyses. The promoter haplotype GCC was positively associated with IgE levels and FEV1PP (P=0.007 and 0.012, respectively). The promoter haplotype ATA was negatively associated with lnPC20 and FEV1PP (P=0.008 and 0.043, respectively). Polymorphisms in IL10 are associated with asthma phenotypes in this cohort. Further studies of variation in the IL10 gene may help elucidate the mechanism of asthma development in children.
PMCID: PMC3705717  PMID: 14748015
interleukin 10 (IL10); single nucleotide polymorphism (SNP); genetic association; family-based association test (FBAT); haplotype; promoter; 3′; untranslated region (3′UTR)
21.  Corticosteroid use and bone mineral accretion in children with asthma: effect modification by vitamin D 
The adverse effects of corticosteroids on bone mineral accretion (BMA) have been well documented. Vitamin D insufficiency, a prevalent condition in the pediatric population, has also been associated with decreased bone mineral density (BMD).
To determine whether children with asthma who have lower vitamin D levels are more susceptible to the negative effects of corticosteroids on BMD over time.
Children aged 5–12 years with mild-to-moderate asthma who participated in the Childhood Asthma Management Program were followed for a mean of 4.3 years. Total doses of inhaled and oral corticosteroids (OCS) were recorded, serum 25-hydroxyvitamin D3 levels were measured at the beginning of the trial and serial DEXA scans of the lumbar spine were performed. Annual BMA rates were defined as: [(BMD at 4 years follow-up − BMD at baseline)/4 years].
BMA was calculated for 780 subjects. In boys, baseline vitamin D levels significantly modified the relationship between OCS and BMA (vitamin D x OCS interaction, p=0.023). Stratification by vitamin D levels showed a decrease in BMA with increased use of OCS in vitamin D insufficient boys only (p<0.001). Compared to vitamin D sufficient boys, vitamin D insufficient boys exposed to more than 2 courses of oral corticosteroids per year had twice the decrease in BMA rate (relative to boys who were OCS-unexposed).
Vitamin D levels significantly modified the effect of oral corticosteroids on bone mineral accretion in boys. Further research is needed to examine whether vitamin D supplementation in children with poorly controlled asthma may confer benefits to bone health.
PMCID: PMC3387323  PMID: 22608570
Asthma; vitamin D; bone mineral density; corticosteroids
22.  Genomewide association study of the age of onset of childhood asthma 
Childhood asthma is a complex disease with known heritability and phenotypic diversity. Although an earlier onset has been associated with more severe disease, there has been no genome-wide association study of the age of onset of asthma in children.
To identify genetic variants associated with earlier onset of childhood asthma.
We conducted the first genome-wide association study (GWAS) of the age of onset of childhood asthma among participants in the Childhood Asthma Management Program (CAMP), and used three independent cohorts from North America, Costa Rica, and Sweden for replication.
Two SNPs were associated with earlier onset of asthma in the combined analysis of CAMP and the replication cohorts: : rs9815663 (Fisher’s P value=2.31 × 10−8) and rs7927044 (P=6.54 × 10−9). Of these two SNPs, rs9815663 was also significantly associated with earlier asthma onset in an analysis including only the replication cohorts. Ten SNPs in linkage disequilibrium with rs9815663 were also associated with earlier asthma onset (2.24 × 10−7 < P < 8.22 ×10−6). Having ≥1 risk allele of the two SNPs of interest (rs9815663 and rs7927044) was associated with lower lung function and higher asthma medication use during 4 years of follow-up in CAMP.
We have identified two SNPs associated with earlier onset of childhood asthma in four independent cohorts.
PMCID: PMC3387331  PMID: 22560479
Asthma; pediatrics; age of onset; asthma genetics; C1orf100; genome-wide association study; pediatric asthma
23.  Predictors of Mucoid Pseudomonas Colonization in Cystic Fibrosis Patients 
Pediatric pulmonology  2008;43(5):463-471.
Rationale: Chronic mucoid Pseudomonas aeruginosa within the airway in cystic fibrosis (CF) patients can determine prognosis. Understanding the risk factors of mucoid P. aeruginosa acquisition may change how we deliver care. This study aims to evaluate whether presence of risk factors reported to predict disease severity including gender, CFTR genotype, bacterial organisms in airway cultures, and serum levels of vitamins A and E, albumin, C-reactive protein, alpha 1-antitrypsin, and immunoglobulins increased the risk of mucoid P. aeruginosa acquisition. Methods: Primary endpoint was age at first transition from negative to positive culture for mucoid P. aeruginosa. Cox proportional hazards regression with time-dependent covariates examined development of mucoid P. aeruginosa infection and its association with longitudinally measured serum biomarkers, pulmonary function, and culture results for other organisms. Results: Median ages at CF diagnosis and at first culture were 0.55 and 5.7 years, respectively. Median number of cultures/patient was 17. Of the 323 subjects, 150 developed mucoid P. aeruginosa during a median 8.1 years’ follow-up. In multivariate analysis, gender (relative hazard [RH] 0.55 for male vs. female, P=0.001), number of DF508 alleles (RH 1.66 for1 or 2 vs. 0, P=0.04), FEV1 % (RH 1.16 for 10% decrease, P=0.008), and most recent Staphylococcus aureus status (RH 0.24 for positive vs. negative, P< 0.0001) remained statistically significant. Conclusion: Female gender, number of DF508 alleles, decreased lung function, and lack of S. aureus on recent sputum culture are important risk factors for early detection of mucoid P. aeruginosa.
PMCID: PMC3693457  PMID: 18361452
cystic fibrosis; Pseudomonas colonization
24.  Genome-wide Association Identifies the T Gene as a Novel Asthma Pharmacogenetic Locus 
Rationale: To date, most studies aimed at discovering genetic factors influencing treatment response in asthma have focused on biologic candidate genes. Genome-wide association studies (GWAS) can rapidly identify novel pharmacogenetic loci.
Objectives: To investigate if GWAS can identify novel pharmacogenetic loci in asthma.
Methods: Using phenotypic and GWAS genotype data available through the NHLBI-funded Single-nucleotide polymorphism Health association-Asthma Resource Project, we analyzed differences in FEV1 in response to inhaled corticosteroids in 418 white subjects with asthma. Of the 444,088 single nucleotide polymorphisms (SNPs) analyzed, the lowest 50 SNPs by P value were genotyped in an independent clinical trial population of 407 subjects with asthma.
Measurements and Main Results: The lowest P value for the GWAS analysis was 2.09 × 10−6. Of the 47 SNPs successfully genotyped in the replication population, three were associated under the same genetic model in the same direction, including two of the top four SNPs ranked by P value. Combined P values for these SNPs were 1.06 × 10−5 for rs3127412 and 6.13 × 10−6 for rs6456042. Although these two were not located within a gene, they were tightly correlated with three variants mapping to potentially functional regions within the T gene. After genotyping, each T gene variant was also associated with lung function response to inhaled corticosteroids in each of the trials associated with rs3127412 and rs6456042 in the initial GWAS analysis. On average, there was a twofold to threefold difference in FEV1 response for those subjects homozygous for the wild-type versus mutant alleles for each T gene SNP.
Conclusions: Genome-wide association has identified the T gene as a novel pharmacogenetic locus for inhaled corticosteroid response in asthma.
PMCID: PMC3381232  PMID: 22538805
polymorphism; genome; pharmacogenomics; glucocorticoid
25.  Maternal intestinal flora and wheeze in early childhood 
Increasing evidence links altered intestinal flora in infancy to eczema and asthma. No studies have investigated the influence of maternal intestinal flora on wheezing and eczema in early childhood.
To investigate the link between maternal intestinal flora during pregnancy and development of wheeze and eczema in infancy.
Sixty pregnant women from the Boston area gave stool samples during the third trimester of their pregnancy and answered questions during pregnancy about their own health, and about their children’s health when the child was 2 and 6 months of age. Quantitative culture was performed on stool samples and measured in log10colony-forming units(CFU)/gram stool. Primary outcomes included infant wheeze and eczema in the first 6 months of life. Atopic wheeze, defined as wheeze and eczema, was analyzed as a secondary outcome.
In multivariate models adjusted for breastfeeding, daycare attendance and maternal atopy, higher counts of maternal total aerobes (TA) and enterococci (E) were associated with increased risk of infant wheeze (TA: OR 2.32 for 1 log increase in CFU/g stool [95% CI 1.22, 4.42]; E: OR 1.57 [95% CI 1.06, 2.31]). No organisms were associated with either eczema or atopic wheeze.
Conclusions & Clinical Relevance
In our cohort, higher maternal total aerobes and enterococci were related to increased risk of infant wheeze. Maternal intestinal flora may be an important environmental exposure in early immune system development.
PMCID: PMC3428746  PMID: 22909161
infant wheeze; eczema; asthma; microbiota; intestinal flora; maternal flora

Results 1-25 (93)