PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Effect of Vitamin D and Inhaled Corticosteroid Treatment on Lung Function in Children 
Rationale: Low vitamin D levels are associated with asthma and decreased airway responsiveness. Treatment with inhaled corticosteroids improves airway responsiveness and asthma control.
Objectives: To assess the effect of vitamin D levels on prebronchodilator FEV1, bronchodilator response, and responsiveness to methacholine (PC20, provocative concentration of methacholine producing a 20% decline in FEV1) in patients with asthma treated with inhaled corticosteroids.
Methods: We measured 25-hydroxyvitamin D levels in the serum of children with persistent asthma at the time of enrollment in the Childhood Asthma Management Program. We divided subjects into the vitamin D sufficiency (>30 ng/ml), insufficiency (20–30 ng/ml), and deficiency (<20 ng/ml) groups. Covariates included age, treatment, sex, body mass index, race, history of emergency department visits, hospitalizations, and season that vitamin D specimen was drawn. Our main outcome measures were change in prebronchodilator FEV1, bronchodilator response, and PC20 from enrollment to 8–12 months.
Measurements and Main Results: Of the 1,024 subjects, 663 (65%) were vitamin D sufficient, 260 (25%) were insufficient, and 101 (10%) were deficient. Vitamin D–deficient subjects were more likely to be older, African American, and have a higher body mass index compared with the vitamin D–sufficient and insufficient subjects. In the inhaled corticosteroid treatment group, prebronchodilator FEV1 increased from randomization to 12 months by 140 ml in the vitamin D–deficient group and prebronchodilator FEV1 increased by 330 ml in the vitamin D insufficiency group and by 290 ml in the vitamin D sufficiency group (P = 0.0072), in adjusted models.
Conclusions: In children with asthma treated with inhaled corticosteroids, vitamin D deficiency is associated with poorer lung function than in children with vitamin D insufficiency or sufficiency.
doi:10.1164/rccm.201202-0351OC
PMCID: PMC3480528  PMID: 22798322
asthma; vitamin D; lung function; forced expiratory volume; children
2.  Corticosteroid use and bone mineral accretion in children with asthma: effect modification by vitamin D 
Background
The adverse effects of corticosteroids on bone mineral accretion (BMA) have been well documented. Vitamin D insufficiency, a prevalent condition in the pediatric population, has also been associated with decreased bone mineral density (BMD).
Objective
To determine whether children with asthma who have lower vitamin D levels are more susceptible to the negative effects of corticosteroids on BMD over time.
Methods
Children aged 5–12 years with mild-to-moderate asthma who participated in the Childhood Asthma Management Program were followed for a mean of 4.3 years. Total doses of inhaled and oral corticosteroids (OCS) were recorded, serum 25-hydroxyvitamin D3 levels were measured at the beginning of the trial and serial DEXA scans of the lumbar spine were performed. Annual BMA rates were defined as: [(BMD at 4 years follow-up − BMD at baseline)/4 years].
Results
BMA was calculated for 780 subjects. In boys, baseline vitamin D levels significantly modified the relationship between OCS and BMA (vitamin D x OCS interaction, p=0.023). Stratification by vitamin D levels showed a decrease in BMA with increased use of OCS in vitamin D insufficient boys only (p<0.001). Compared to vitamin D sufficient boys, vitamin D insufficient boys exposed to more than 2 courses of oral corticosteroids per year had twice the decrease in BMA rate (relative to boys who were OCS-unexposed).
Conclusions
Vitamin D levels significantly modified the effect of oral corticosteroids on bone mineral accretion in boys. Further research is needed to examine whether vitamin D supplementation in children with poorly controlled asthma may confer benefits to bone health.
doi:10.1016/j.jaci.2012.04.005
PMCID: PMC3387323  PMID: 22608570
Asthma; vitamin D; bone mineral density; corticosteroids
3.  Genomewide association study of the age of onset of childhood asthma 
BACKGROUND
Childhood asthma is a complex disease with known heritability and phenotypic diversity. Although an earlier onset has been associated with more severe disease, there has been no genome-wide association study of the age of onset of asthma in children.
OBJECTIVE
To identify genetic variants associated with earlier onset of childhood asthma.
METHODS
We conducted the first genome-wide association study (GWAS) of the age of onset of childhood asthma among participants in the Childhood Asthma Management Program (CAMP), and used three independent cohorts from North America, Costa Rica, and Sweden for replication.
RESULTS
Two SNPs were associated with earlier onset of asthma in the combined analysis of CAMP and the replication cohorts: : rs9815663 (Fisher’s P value=2.31 × 10−8) and rs7927044 (P=6.54 × 10−9). Of these two SNPs, rs9815663 was also significantly associated with earlier asthma onset in an analysis including only the replication cohorts. Ten SNPs in linkage disequilibrium with rs9815663 were also associated with earlier asthma onset (2.24 × 10−7 < P < 8.22 ×10−6). Having ≥1 risk allele of the two SNPs of interest (rs9815663 and rs7927044) was associated with lower lung function and higher asthma medication use during 4 years of follow-up in CAMP.
CONCLUSIONS
We have identified two SNPs associated with earlier onset of childhood asthma in four independent cohorts.
doi:10.1016/j.jaci.2012.03.020
PMCID: PMC3387331  PMID: 22560479
Asthma; pediatrics; age of onset; asthma genetics; C1orf100; genome-wide association study; pediatric asthma
4.  Acceptance of Asthma Pharmacogenetic Study by Children and Adults 
Background
Pharmacogenetic testing may change clinical medicine by allowing clinicians to tailor medications based on a patient’s genetic makeup, however, these tests must first be validated in large, real-life populations of subjects that include children. A dearth of knowledge exists for whether pediatric populations are as willing as adult populations to provide samples for such studies.
Objective
(1) To assess whether pediatric and adult patients with persistent asthma are willing to provide specimens for DNA extraction and genetic studies. (2) To assess whether patients’ willingness to provide blood as compared to buccal smear specimens differ.
Methods
Of 644 patients ages 4–38 years who had three or more prescription fills for inhaled corticosteroids in one year, 60% (385) were randomized to the blood specimen group and 40% (259) were randomized to the buccal smear group in order to study acceptance of different biospecimen collection methods. Research assistants contacted subjects to obtain consent, perform a phone survey, and request a specimen.
Results
There were no baseline differences between subjects randomized to the blood specimen group versus buccal smear group with respect to age, gender, or number of dispensings of inhaled corticosteroids. Of 259 subjects in the buccal smear group, 30% (78) provided samples, and of 385 subjects in the blood specimen group, 16% (60) provided samples. Subjects randomized to the buccal smear group were more likely to provide specimens for genetic study compared to subjects randomized to the blood specimen group (RR 1.21; 95% CI 1.10 – 1.32), even after adjusting for age. Pediatric subjects were more likely to provide specimens for genetic study than adult subjects with 23% (113) of pediatric subjects providing samples and 15% (25) of adult subjects providing samples (p=0.03).
Conclusion
Children with asthma are as likely to participate in genetic studies as adults. Both children and adult subjects are more likely to provide buccal smear specimens rather than blood specimens for genetic study.
doi:10.4172/2153-0645.1000103
PMCID: PMC3614400  PMID: 23560243
pharmacogenetics; patient recruitment; children; buccal swab; blood specimen
5.  The Pharmacogenetics and Pharmacogenomics of Asthma Therapy 
The Pharmacogenomics Journal  2011;11(6):383-392.
Despite the availability of several classes of asthma medications and their overall effectiveness, a significant portion of patients fail to respond to these therapeutic agents. Evidence suggests that genetic factors may partly mediate the heterogeneity in asthma treatment response. This review discusses important findings in asthma pharmacogenetics and pharmacogenomics studies conducted to date, examines limitations of these studies and finally, proposes future research directions in this field. The focus will be on the three major classes of asthma medications: β-adrenergic receptor agonists, inhaled corticosteroids and leukotriene modifiers. Although many studies are limited by small sample sizes and replication of the findings is needed, several candidate genes have been identified. High-throughput technologies is also allowing for large-scale genetic investigations. Thus, the future is promising for a personalized treatment of asthma, which will improve therapeutic outcomes, minimize side effects and lead to a more cost-effective care.
doi:10.1038/tpj.2011.46
PMCID: PMC3298891  PMID: 21987090
asthma; pharmacogenetics; pharmacogenomics
6.  Genetic Influences on Asthma Susceptibility in the Developing Lung 
Asthma is the leading serious pediatric chronic illness in the United States, affecting 7.1 million children. The prevalence of asthma in children under 4 years of age has increased dramatically in the last 2 decades. Existing evidence suggests that this increase in prevalence derives from early environmental exposures acting on a pre-existing asthma-susceptible genotype. We studied the origins of asthma susceptibility in developing lung in rat strains that model the distinct phenotypes of airway hyperresponsiveness (Fisher rats) and atopy (brown Norway [BN] rats). Postnatal BN rat lungs showed increased epithelial proliferation and tracheal goblet cell hyperplasia. Fisher pups showed increased lung resistance at age 2 weeks, with elevated neutrophils throughout the postnatal period. Diverse transcriptomic signatures characterized the distinct respiratory phenotypes of developing lung in both rat models. Linear regression across age and strain identified developmental variation in expression of 1,376 genes, and confirmed both strain and temporal regulation of lung gene expression. Biological processes that were heavily represented included growth and development (including the T Box 1 transcription factor [Tbx5], the epidermal growth factor receptor [Egfr], the transforming growth factor beta-1-induced transcript 1 [Tgfbr1i1]), extracellular matrix and cell adhesion (including collagen and integrin genes), and immune function (including lymphocyte antigen 6 (Ly6) subunits, IL-17b, Toll-interacting protein, and Ficolin B). Genes validated by quantitative RT-PCR and protein analysis included collagen III alpha 1 Col3a1, Ly6b, glucocorticoid receptor and Importin-13 (specific to the BN rat lung), and Serpina1 and Ficolin B (specific to the Fisher lung). Innate differences in patterns of gene expression in developing lung that contribute to individual variation in respiratory phenotype are likely to contribute to the pathogenesis of asthma.
doi:10.1165/rcmb.2009-0412OC
PMCID: PMC3159089  PMID: 20118217
asthma susceptibility; lung development; developmental gene expression
7.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
doi:10.1164/rccm.200907-1009OC
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
8.  Global Analysis of the Impact of Environmental Perturbation on cis-Regulation of Gene Expression 
PLoS Genetics  2011;7(1):e1001279.
Genetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent by which controlled, environmental perturbation influences cis-eQTLs is unclear. We carried out large-scale induction experiments using primary human bone cells derived from unrelated donors of Swedish origin treated with 18 different stimuli (7 treatments and 2 controls, each assessed at 2 time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t = 2h), dexamethasone (DEX) (t = 24h), and PGE2 (t = 24h). Using these treatments and control, we performed expression profiling for 18,144 RefSeq transcripts on biological replicates of the complete study cohort of 113 individuals (ntotal = 782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs (defined as SNPs located within the gene ±250 kb). We found that 93% of cis-eQTLs at 1% FDR were observed in at least one additional treatment, and in fact, on average, only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment. Treatment-specific cis-regulatory effects were, however, 2- to 6-fold more abundant among differently expressed genes upon treatment. We further followed-up and validated the DEX–specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 kb and 250 kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interactions between cellular environment and cis-variants are relatively rare (∼1.5%), but that detection of such specific interactions can be achieved by a combination of functional genomic approaches as described here.
Author Summary
Population variation in normal gene expression has been convincingly shown to be under strong genetic control where the main genetic variants are located within close proximity to the gene itself (so called cis-acting). However, the extent to which controlled, environmental stimuli influences cis-regulation of gene expression is unclear. Here, we combine different functional genomic approaches and examine the role of common genetic variants on induced gene expression in a population panel of primary human cells derived from ∼100 unrelated donors treated under multiple conditions. Using these approaches, we find that the interaction between cellular environment and cis-variants are relatively rare, with only a small proportion of the identified genetic variants being specific to treatment. However, although treatment-specific genetic regulation of gene expression seems to be infrequent, we prove its existence by thorough validation of treatment-specific effects of the glucocorticoid-specific regulation of TNC expression. Taken together, these findings indicate that the regulatory landscape within a cell is very stable but, by combining functional genomic tools gene-environmental interactions of clinical importance, can be detected and possibly used as biomarkers in future pharmacogenomic studies.
doi:10.1371/journal.pgen.1001279
PMCID: PMC3024267  PMID: 21283786
9.  Repeatability of Response to Asthma Medications 
Background
Pharmacogenetic studies of drug response in asthma assume that patients respond consistently to a treatment but that treatment response varies across patients, however, no formal studies have demonstrated this.
Objective
To determine the repeatability of commonly used outcomes for treatment response to asthma medications: bronchodilator response, forced expiratory volume in 1 second (FEV1), and provocative concentration of methacholine producing a 20% decline in FEV1 (PC20).
Methods
The Childhood Asthma Management Program (CAMP) was a multi-center clinical trial of children randomized to receiving budesonide, nedocromil, or placebo. We determined the intraclass correlation coefficient (ICC) for each outcome over repeated visits over four years in CAMP using mixed effects regression models. We adjusted for the covariates: age, race/ethnicity, height, family income, parental education, and symptom score. We incorporated each outcome for each child as repeated outcome measurements and stratified by treatment group.
Results
The ICC for bronchodilator response was 0.31 in the budesonide group, 0.35 in the nedocromil group, and 0.40 in the placebo group, after adjusting for covariates. The ICC for FEV1 was 0.71 in the budesonide group, 0.60 in the nedocromil group, and 0.69 in the placebo group, after adjusting for covariates. The ICC for PC20 was 0.67 in the budesonide and placebo groups and 0.73 in the nedocromil group, after adjusting for covariates.
Conclusion
The within treatment group repeatability of FEV1 and PC20 are high; thus these phenotypes are heritable. FEV1 and PC20 may be better phenotypes than bronchodilator response for studies of treatment response in asthma.
doi:10.1016/j.jaci.2008.10.015
PMCID: PMC2980870  PMID: 19064281
asthma; drug response; heritability; bronchodilator; pharmacogenetics
10.  Predicting response to short-acting bronchodilator medication using Bayesian networks 
Pharmacogenomics  2009;10(9):1393-1412.
Aims
Bronchodilator response tests measure the effect of β2-agonists, the most commonly used short-acting reliever drugs for asthma. We sought to relate candidate gene SNP data with bronchodilator response and measure the predictive accuracy of a model constructed with genetic variants.
Materials & methods
Bayesian networks, multivariate models that are able to account for simultaneous associations and interactions among variables, were used to create a predictive model of bronchodilator response using candidate gene SNP data from 308 Childhood Asthma Management Program Caucasian subjects.
Results
The model found that 15 SNPs in 15 genes predict bronchodilator response with fair accuracy, as established by a fivefold cross-validation area under the receiver-operating characteristic curve of 0.75 (standard error: 0.03).
Conclusion
Bayesian networks are an attractive approach to analyze large-scale pharmacogenetic SNP data because of their ability to automatically learn complex models that can be used for the prediction and discovery of novel biological hypotheses.
doi:10.2217/pgs.09.93
PMCID: PMC2804237  PMID: 19761364
asthma; Bayesian networks; β2-agonists; bronchodilator response; prediction
11.  Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma 
Respiratory Research  2009;10(1):67.
Background
Glucocorticoid function is dependent on efficient translocation of the glucocorticoid receptor (GR) from the cytoplasm to the nucleus of cells. Importin-13 (IPO13) is a nuclear transport receptor that mediates nuclear entry of GR. In airway epithelial cells, inhibition of IPO13 expression prevents nuclear entry of GR and abrogates anti-inflammatory effects of glucocorticoids. Impaired nuclear entry of GR has been documented in steroid-non-responsive asthmatics. We hypothesize that common IPO13 genetic variation influences the anti-inflammatory effects of inhaled corticosteroids for the treatment of asthma, as measured by change in methacholine airway hyperresponsiveness (AHR-PC20).
Methods
10 polymorphisms were evaluated in 654 children with mild-to-moderate asthma participating in the Childhood Asthma Management Program (CAMP), a clinical trial of inhaled anti-inflammatory medications (budesonide and nedocromil). Population-based association tests with repeated measures of PC20 were performed using mixed models and confirmed using family-based tests of association.
Results
Among participants randomized to placebo or nedocromil, IPO13 polymorphisms were associated with improved PC20 (i.e. less AHR), with subjects harboring minor alleles demonstrating an average 1.51–2.17 fold increase in mean PC20 at 8-months post-randomization that persisted over four years of observation (p = 0.01–0.005). This improvement was similar to that among children treated with long-term inhaled corticosteroids. There was no additional improvement in PC20 by IPO13 variants among children treated with inhaled corticosteroids.
Conclusion
IPO13 variation is associated with improved AHR in asthmatic children. The degree of this improvement is similar to that observed with long-term inhaled corticosteroid treatment, suggesting that IPO13 variation may improve nuclear bioavailability of endogenous glucocorticoids.
doi:10.1186/1465-9921-10-67
PMCID: PMC2724419  PMID: 19619331
12.  Platform dependence of inference on gene-wise and gene-set involvement in human lung development 
BMC Bioinformatics  2009;10:189.
Background
With the recent development of microarray technologies, the comparability of gene expression data obtained from different platforms poses an important problem. We evaluated two widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung tissue as a function of gestational age.
Results
We performed the comparison via sequence-based probe matching between the two platforms. "Significance grouping" was defined as a measure of comparability. Using both expression correlation and significance grouping as measures of comparability, we demonstrated that despite overall cross-platform differences at the single gene level, increased correlation between the two platforms was found in genes with higher expression level, higher probe overlap, and lower p-value. We also demonstrated that biological function as determined via KEGG pathways or GO categories is more consistent across platforms than single gene analysis.
Conclusion
We conclude that while the comparability of the platforms at the single gene level may be increased by increasing sample size, they are highly comparable ontologically even for subtle differences in a relatively small sample size. Biologically relevant inference should therefore be reproducible across laboratories using different platforms.
doi:10.1186/1471-2105-10-189
PMCID: PMC2711081  PMID: 19545372
13.  Sequence, Haplotype, and Association Analysis of ADRβ2 in a Multiethnic Asthma Case-Control Study 
Rationale: The comprehensive evaluation of gene variation, haplotype structure, and linkage disequilibrium is important in understanding the function of β2-adrenergic receptor gene (ADRβ2) on disease susceptibility, pulmonary function, and therapeutic responses in different ethnic groups with asthma.
Objectives: To identify ADRβ2 polymorphisms and haplotype structure in white and African American subjects and to test for genotype and haplotype association with asthma phenotypes.
Methods: A 5.3-kb region of ADRβ2 was resequenced in 669 individuals from 429 whites and 240 African Americans. A total of 12 polymorphisms, representing an optimal haplotype tagging set, were genotyped in whites (338 patients and 326 control subjects) and African Americans (222 patients and 299 control subjects).
Results: A total of 49 polymorphisms were identified, 21 of which are novel; 31 polymorphisms (frequency > 0.03) were used to identify 24 haplotypes (frequency > 0.01) and assess linkage disequilibrium. Association with ratio (FEV1/FVC)2 for single-nucleotide polymorphism +79 (p < 0.05) was observed in African Americans. Significant haplotype association for (FEV1/FVC)2 was also observed in African Americans.
Conclusions: There are additional genetic variants besides +46 (Gly16Arg) that are important in determining asthma phenotypes. These data suggest that the length of a poly-C repeat (+1269) in the 3′ untranslated region of ADRβ2 may influence lung function, and may be important in delineating variation in β-agonist responses, especially in African Americans.
doi:10.1164/rccm.200509-1405OC
PMCID: PMC2648111  PMID: 16931635
asthma; β2-adrenergic receptor; β-agonist therapy; DNA polymorphisms; pharmacogenomics
14.  T-Bet Polymorphisms Are Associated with Asthma and Airway Hyperresponsiveness 
Rationale: T-bet (TBX21 or T-box 21) is a critical regulator of T-helper 1 lineage commitment and IFN-γ production. Knockout mice lacking T-bet develop airway hyperresponsiveness (AHR) to methacholine, peribronchial eosinophilic and lymphocytic inflammation, and increased type III collagen deposition below the bronchial epithelium basement membrane, reminiscent of both acute and chronic asthma histopathology. Little is known regarding the role of genetic variation surrounding T-bet in the development of human AHR.
Objectives: To assess the relationship between T-bet polymorphisms and asthma-related phenotypes using family-based association.
Methods: Single nucleotide polymorphism discovery was performed by resequencing the T-bet genomic locus in 30 individuals (including 22 patients with asthma). Sixteen variants were genotyped in 580 nuclear families ascertained through offspring with asthma from the Childhood Asthma Management Program clinical trial. Haplotype patterns were determined from this genotype data. Family-based tests of association were performed with asthma, AHR, lung function, total serum immunoglobulin E, and blood eosinophil levels.
Main Results: We identified 24 variants. Evidence of association was observed between c.−7947 and asthma in white families using both additive (p = 0.02) or dominant models (p = 0.006). c.−7947 and three other variants were also associated with AHR (log-methacholine PC20, p = 0.02–0.04). Haplotype analysis suggested that an AHR locus is in linkage disequilibrium with variants in the 3′UTR. Evidence of association of AHR with c.−7947, but not with other 3′UTR SNPs, was replicated in an independent cohort of adult males with AHR.
Conclusions: These data suggest that T-bet variation contributes to airway responsiveness in asthma.
doi:10.1164/rccm.200503-505OC
PMCID: PMC2662983  PMID: 16179640
immunoglobulin E; single nucleotide polymorphism; T-box; TBX21

Results 1-14 (14)