PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  MMP12, Lung Function, and COPD in High-Risk Populations 
The New England journal of medicine  2009;361(27):2599-2608.
BACKGROUND
Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups.
METHODS
We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV1]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV1 and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD.
RESULTS
The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [−82A→G]) was positively associated with FEV1 in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2×10−6). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P = 0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P = 0.005) and among participants in a family-based study of early-onset COPD (P = 0.006).
CONCLUSIONS
The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.
doi:10.1056/NEJMoa0904006
PMCID: PMC2904064  PMID: 20018959
2.  Modifying Effects of the HFE Polymorphisms on the Association between Lead Burden and Cognitive Decline 
Environmental Health Perspectives  2007;115(8):1210-1215.
Background
As iron and lead promote oxidative damage, and hemochromatosis (HFE) gene polymorphisms increase body iron burden, HFE variant alleles may modify the lead burden and cognitive decline relationship.
Objective
Our goal was to assess the modifying effects of HFE variants on the lead burden and cognitive decline relation in older adults.
Methods
We measured tibia and patella lead using K-X-ray fluorescence (1991–1999) among participants of the Normative Aging Study, a longitudinal study of community-dwelling men from greater Boston. We assessed cognitive function with the Mini-Mental State Examination (MMSE) twice (1993–1998 and 1995–2000) and genotyped participants for HFE polymorphisms. We estimated the adjusted mean differences in lead-associated annual cognitive decline across HFE genotype groups (n = 358).
Results
Higher tibia lead was associated with steeper cognitive decline among participants with at least one HFE variant allele compared with men with only wild-type alleles (p interaction = 0.03), such that a 15 μg/g increase in tibia lead was associated with a 0.2 point annual decrement in MMSE score among HFE variant allele carriers. This difference in scores among men with at least one variant allele was comparable to the difference in baseline MMSE scores that we observed among men who were 4 years apart in age. Moreover, the deleterious association between tibia lead and cognitive decline appeared progressively worse in participants with increasingly more copies of HFE variant alleles (p-trend = 0.008). Results for patella lead were similar.
Conclusion
Our findings suggest that HFE polymorphisms greatly enhance susceptibility to lead-related cognitive impairment in a pattern consistent with allelelic dose.
doi:10.1289/ehp.9855
PMCID: PMC1940090  PMID: 17687449
cognitive decline; epidemiology; HFE; lead; longitudinal studies; neuropsychologic tests
3.  T-Bet Polymorphisms Are Associated with Asthma and Airway Hyperresponsiveness 
Rationale: T-bet (TBX21 or T-box 21) is a critical regulator of T-helper 1 lineage commitment and IFN-γ production. Knockout mice lacking T-bet develop airway hyperresponsiveness (AHR) to methacholine, peribronchial eosinophilic and lymphocytic inflammation, and increased type III collagen deposition below the bronchial epithelium basement membrane, reminiscent of both acute and chronic asthma histopathology. Little is known regarding the role of genetic variation surrounding T-bet in the development of human AHR.
Objectives: To assess the relationship between T-bet polymorphisms and asthma-related phenotypes using family-based association.
Methods: Single nucleotide polymorphism discovery was performed by resequencing the T-bet genomic locus in 30 individuals (including 22 patients with asthma). Sixteen variants were genotyped in 580 nuclear families ascertained through offspring with asthma from the Childhood Asthma Management Program clinical trial. Haplotype patterns were determined from this genotype data. Family-based tests of association were performed with asthma, AHR, lung function, total serum immunoglobulin E, and blood eosinophil levels.
Main Results: We identified 24 variants. Evidence of association was observed between c.−7947 and asthma in white families using both additive (p = 0.02) or dominant models (p = 0.006). c.−7947 and three other variants were also associated with AHR (log-methacholine PC20, p = 0.02–0.04). Haplotype analysis suggested that an AHR locus is in linkage disequilibrium with variants in the 3′UTR. Evidence of association of AHR with c.−7947, but not with other 3′UTR SNPs, was replicated in an independent cohort of adult males with AHR.
Conclusions: These data suggest that T-bet variation contributes to airway responsiveness in asthma.
doi:10.1164/rccm.200503-505OC
PMCID: PMC2662983  PMID: 16179640
immunoglobulin E; single nucleotide polymorphism; T-box; TBX21
4.  Glutathione-S-Transferase M1, Obesity, Statins, and Autonomic Effects of Particles 
Rationale: Air pollution by particulate matter (PM) has been associated with cardiovascular deaths, although the mechanism of action is unclear. One proposed pathway is through disturbances of the autonomic control of the heart.
Objectives: We tested the hypothesis that such disturbances are mediated by PM increasing oxidative stress by examining the association between PM and the high-frequency (HF) component of heart rate variability as modified by the presence or absence of the allele for glutathione-S-transferase M1 (GSTM1) and the use of statins, obesity, high neutrophil counts, higher blood pressure, and older age.
Methods: We examined the association between particles less than 2.5 μM in aerodiameter (PM2.5) and HF in 497 participants in the Normative Aging Study, using linear regression controlling for covariates.
Main Results: A 10-μg/m3 increase in PM2.5 during the 48 h before HF measurement was associated with a 34% decrease in HF, 95% confidence interval (−9%, −52%), in subjects without the allele, but had no effect in subjects with GSTM1 present. Among GSTM1-null subjects, the use of statins eliminated the effect of PM2.5. Obesity and high neutrophil counts also worsened the PM effects with or without GSTM1.
Conclusion: The effects of PM2.5 on HF appear to be mediated by reactive oxygen species. This may be a key pathway for the adverse effects of combustion particles.
doi:10.1164/rccm.200412-1698OC
PMCID: PMC2718454  PMID: 16020798
genetic polymorphisms; heart rate variability; oxidative stress; particles
5.  Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations 
Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or qualitative COPD-related phenotypes were found for the tumor necrosis factor (TNF)-α −308G>A promoter polymorphism (P < 0.02), a coding variant in surfactant protein B (SFTPB Thr131Ile) (P = 0.03), and the (GT)31 allele of the heme oxygenase (HMOX1) promoter short tandem repeat (P = 0.02). In the case-control study, the SFTPB Thr131Ile polymorphism was associated with COPD, but only in the presence of a gene-by-environment interaction term (P = 0.01 for both main effect and interaction). The 30-repeat, but not the 31-repeat, allele of HMOX1 was associated (P = 0.04). The TNF −308G>A polymorphism was not significant. In addition, the microsomal epoxide hydrolase “fast” allele (EPHX1 His139Arg) was significantly associated in the case-control study (P = 0.03). Although some evidence for replication was found for SFTPB and HMOX1, none of the previously published COPD genetic associations was convincingly replicated across both study designs.
doi:10.1165/rcmb.2005-0073OC
PMCID: PMC2715305  PMID: 15817713
association studies; case-control studies; emphysema; genetics; single nucleotide polymorphism
6.  Association between hemochromatosis genotype and lead exposure among elderly men: the normative aging study. 
Environmental Health Perspectives  2004;112(6):746-750.
Because body iron burden is inversely associated with lead absorption, genes associated with hemochromatosis may modify body lead burden. Our objective was to determine whether the C282Y and/or H63D hemochromatosis gene (HFE) is associated with body lead burden. Patella and tibia lead levels were measured by K X-ray fluorescence in subjects from the Normative Aging Study. DNA samples were genotyped for C282Y and H63D using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). A series of multivariate linear regression models were constructed with bone or blood lead as dependent variables; age, smoking, and education as independent variables; and C282Y or H63D as independent risk factors and/or effect modifiers. Of 730 subjects, 94 (13%) carried the C282Y variant and 183 (25%) carried the H63D variant. In the crude analysis, mean tibia, patella, and blood lead levels were consistently lower in carriers of either HFE variant compared with levels in subjects with wild-type genotypes. In multivariate analyses that adjusted for age, smoking, and education, having an HFE variant allele was an independent predictor of significantly lower patella lead levels (p < 0.05). These data suggest that HFE variants have altered kinetics of lead accumulation after exposure. Among elderly men, subjects with HFE variants had lower patella lead levels. These effects may be mediated by alterations in lead toxicokinetics via iron metabolic pathways regulated by the HFE gene product and body iron stores.
PMCID: PMC1241970  PMID: 15121519
7.  A delta-aminolevulinic acid dehydratase (ALAD) polymorphism may modify the relationship of low-level lead exposure to uricemia and renal function: the normative aging study. 
Environmental Health Perspectives  2003;111(3):335-341.
In this study we investigated whether a known delta-aminolevulinic acid dehydratase (ALAD) exon 4 polymorphism has a modifying effect on the association of blood or bone lead level with uricemia and indices of renal function among middle-aged and elderly men. We performed a cross-sectional study of subjects who participated between 1991 and 1995 in the Department of Veterans Affairs Normative Aging Study. Information on blood lead levels, bone lead levels (measured by K-shell X-ray fluorescence), serum uric acid, serum creatinine, estimated creatinine clearance, and ALAD polymorphism status was available in 709 subjects. Regression models were constructed to examine the relationships of serum uric acid, serum creatinine, and estimated creatinine clearance to blood or bone lead level, stratified by genotype. We also adjusted for age, body mass index, blood pressure, smoking, alcohol consumption, and ingestion of analgesic medications (n = 638). Of the 709 subjects, 7 (1%) and 107 (15%) were homozygous and heterozygous for the variant (ALAD-2) allele, respectively. The mean (range) serum uric acid and creatinine levels were 6.5 (2.9-10.6) and 1.2 (0.6-2.5) mg/dL. No significant differences were found in serum uric acid, serum creatinine, or estimated creatinine clearance by ALAD genotype. However, after adjusting for other potential confounders, we found a significant linear relationship between serum uric acid and patella bone lead (p = 0.040) among the ALAD 1-2/2-2 genotype individuals above a threshold patellar lead level of 15 micro g/g. In contrast, among the wild-type (ALAD 1-1) individuals, there was a suggestion of a significant linear relationship of serum uric acid with patella bone lead (p = 0.141), but only after a threshold of 101 micro g/g. There was evidence of a significant (p = 0.025) interaction of tibia lead with genotype (ALAD 1-1 vs. ALAD 1-2/2-2) regarding serum creatinine as an outcome, but in the same linear regression model tibia lead alone was not a significant predictor of serum creatinine. Conversely, for estimated creatinine clearance, patella lead, but not the interaction of patella lead with genotype, was a significantly independent predictor (p = 0.026). Our findings suggest that ALAD genotype may modify the effect of lead on the renal excretion of uric acid as well as overall renal function among middle-aged and elderly men who had community (nonoccupational) exposures to lead. Additional research is needed to ascertain whether this constitutes a true gene-environment interaction and, if so, its clinical impact.
PMCID: PMC1241391  PMID: 12611663

Results 1-7 (7)