PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Expression analysis of asthma candidate genes during human and murine lung development 
Respiratory Research  2011;12(1):86.
Background
Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.
Objective
To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.
Methods
Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.
Results
In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development.
Conclusions
Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.
doi:10.1186/1465-9921-12-86
PMCID: PMC3141421  PMID: 21699702
Asthma; Development; Expression; Genetics; Lung
2.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
doi:10.1164/rccm.200907-1009OC
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
3.  Clinical Predictors and Outcomes of Consistent Bronchodilator Response in the Childhood Asthma Management Program 
Background
Among asthmatics, bronchodilator response (BDR) to inhaled ß2- adrenergic agonists is variable, and the significance of a consistent response over time is unknown.
Objective
We assessed baseline clinical variables and determined the clinical outcomes associated with a consistently positive BDR over 4 years in children with mild-moderate persistent asthma.
Methods
In the 1,041 participants in the Childhood Asthma Management Program (CAMP), subjects with a change in FEV1 of 12% or greater (and 200mLs) after inhaled ß2 agonist at each of their yearly follow-up visits (consistent BDR) were compared with those who did not have a consistent BDR.
Results
We identified 52 children with consistent BDR over the 4-year trial. Multivariable logistic regression modeling demonstrated that baseline pre-bronchodilator FEV1 (OR=0.71, p<0.0001), log 10 IgE level (OR=1.97, p=0.002), and lack of treatment with inhaled corticosteroids (OR=0.31, p=0.009) were associated with a consistent BDR. Individuals who had a consistent BDR had more hospital visits (p=0.007), required more prednisone bursts (p=0.0007), had increased nocturnal awakenings due to asthma (p<0.0001), and missed more days of school (p=0.03) than non-responders during the 4-year follow-up.
Conclusions
We have identified predictors of consistent BDR and determined that this phenotype is associated with poor clinical outcomes.
doi:10.1016/j.jaci.2008.09.004
PMCID: PMC2947830  PMID: 18848350
asthma; consistent bronchodilator response; outcomes
4.  Variants in TGFB1, Dust Mite Exposure, and Disease Severity in Children with Asthma 
Rationale: Polymorphisms in the gene for transforming growth factor-β1 (TGFB1) have been associated with asthma, but not with airway responsiveness or disease exacerbations in subjects with asthma.
Objectives: To test for association between single nucleotide polymorphisms (SNPs) in TGFB1 and markers of asthma severity in childhood.
Methods: We tested for the association between nine SNPs in TGFB1 and indicators of asthma severity (lung function, airway responsiveness, and disease exacerbations) in two cohorts: 416 Costa Rican parent-child trios and 465 families of non-Hispanic white children in the Childhood Asthma Management Program (CAMP). We also tested for the interaction between these polymorphisms and exposure to dust mite allergen on asthma severity.
Measurements and Main Results: The A allele of promoter SNP rs2241712 was associated with increased airway responsiveness in Costa Rica (P = 0.0006) and CAMP (P = 0.005), and the C allele of an SNP in the promoter region (rs1800469) was associated with increased airway responsiveness in both cohorts (P ≤ 0.01). Dust mite exposure modified the effect of the C allele of exonic SNP rs1800471 on airway responsiveness (P = 0.03 for interactions in both cohorts). The T allele of a coding SNP (rs1982073) was associated with a reduced risk of asthma exacerbations in Costa Rica (P = 0.009) and CAMP (P = 0.005). Dust mite exposure also significantly modified the effect of the A allele of the promoter SNP rs2241712 on asthma exacerbations in both cohorts.
Conclusions: SNPs in TGFB1 are associated with airway responsiveness and disease exacerbations in children with asthma. Moreover, dust mite exposure may modify the effect of TGFB1 SNPs on airway responsiveness and asthma exacerbations.
doi:10.1164/rccm.200808-1268OC
PMCID: PMC2648908  PMID: 19096005
airway responsiveness; asthma; dust mite allergen; single nucleotide polymorphisms; transforming growth factor-β1

Results 1-4 (4)