Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Association of defensin β-1 gene polymorphisms with asthma 
Defensins are antimicrobial peptides that may take part in airway inflammation and hyperresponsiveness.
We characterized the genetic diversity in the defensin β-1 (DEFB1) locus and tested for an association between common genetic variants and asthma diagnosis.
To identify single nucleotide polymorphisms (SNPs), we resequenced this gene in 23 self-defined European Americans and 24 African Americans. To test whether DEFB1 genetic variants are associated with asthma, we genotyped 4 haplotype-tag SNPs in 517 asthmatic and 519 control samples from the Nurses’ Health Study (NHS) and performed a case-control association analysis. To replicate these findings, we evaluated the DEFB1 polymorphisms in a second cohort from the Childhood Asthma Management Program.
Within the NHS, single SNP testing suggested an association between asthma diagnosis and a 5′ genomic SNP (g.–1816 T>C; P = .025) and intronic SNP (IVS+692 G>A; P = .054). A significant association between haplotype (Adenine, Cytosine, Thymine, Adenine [ACTA]) and asthma (P = .024) was also identified. Associations between asthma diagnosis and both DEFB1 polymorphisms were observed in Childhood Asthma Management Program, a second cohort: g.–1816 T>C and IVS+692 G>A demonstrated significant transmission distortion (P = .05 and .007, respectively). Transmission distortion was not observed in male subjects. The rare alleles (–1816C and +692A) were undertransmitted to offspring with asthma, suggesting a protective effect, contrary to the findings in the NHS cohort. Similar effects were evident at the haplotype level: ACTA was undertransmitted (P = .04) and was more prominent in female subjects (P = .007).
Variation in DEFB1 contributes to asthma diagnosis, with apparent gender-specific effects.
PMCID: PMC4475026  PMID: 15696078
Asthma; asthma genetics; defensin; association studies
2.  Glucocorticoid Receptor Hetero-Complex Gene STIP1 Is Associated with Improved Lung Function in Asthmatics Treated with Inhaled Corticosteroids 
Corticosteroids exert their anti-inflammatory action by binding and activating the intracellular the glucocorticoid receptor (GR) hetero-complex.
Evaluate the genes HSPCB, HSPCA, STIP1, HSPA8, DNAJB1, PTGES3, FKBP5, and FKBP4 on corticosteroid response.
Caucasian asthmatics (382) randomized to once daily flunisolide or conventional inhaled corticosteroid therapy were genotyped. Outcome measures were baseline FEV1, % predicted FEV1, and % change in FEV1 after corticosteroid treatment. Multivariable analyses adjusted for age, gender, and height, were performed fitting the most appropriate genetic model based on quantitative mean derived from ANOVA models to determine if there was an independent effect of polymorphisms on change in FEV1 independent of baseline level.
Positive recessive model correlations for STIP1 SNPs were observed for baseline FEV1 [rs4980524, p=0.009; rs6591838, p=0.0045; rs2236647, p=0.002; and rs2236648; p=0.013], baseline % predicted FEV1 [rs4980524, p=0.002; rs6591838, p=0.017; rs2236647, p=0.003; and rs2236648; p=0.008] ; % change in FEV1 at 4 weeks [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01] and 8 weeks therapy [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01]. Haplotypic associations were observed for baseline FEV1 and % change in FEV1 at 4 weeks therapy [p=0.05 and p=0.01, respectively]. Significant trends towards association were observed for baseline % predicted FEV1 and % change in FEV1 at 8 weeks therapy. Positive correlations between haplotypes and % change in FEV1 were also observed.
STIP1 genetic variations may play a role in regulating corticosteroid response in asthmatics with reduced lung function. Replication in a second asthma population is required to confirm these observations.
Clinical Implications
Identifying genes that regulate corticosteroid responses could allow a priori determination of individual responses to corticosteroid therapy, leading to more effective dosing and/or selection of drug therapies for treating asthma.
PMCID: PMC4317788  PMID: 19254810
corticosteroid; pharmacogenetics; glucocorticoid receptor; SNP; heat shock protein; heat shock organizing protein; immunophilin
3.  Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis 
BMC Medical Genomics  2014;7:48.
Allergic rhinitis is a common disease whose genetic basis is incompletely explained. We report an integrated genomic analysis of allergic rhinitis.
We performed genome wide association studies (GWAS) of allergic rhinitis in 5633 ethnically diverse North American subjects. Next, we profiled gene expression in disease-relevant tissue (peripheral blood CD4+ lymphocytes) collected from subjects who had been genotyped. We then integrated the GWAS and gene expression data using expression single nucleotide (eSNP), coexpression network, and pathway approaches to identify the biologic relevance of our GWAS.
GWAS revealed ethnicity-specific findings, with 4 genome-wide significant loci among Latinos and 1 genome-wide significant locus in the GWAS meta-analysis across ethnic groups. To identify biologic context for these results, we constructed a coexpression network to define modules of genes with similar patterns of CD4+ gene expression (coexpression modules) that could serve as constructs of broader gene expression. 6 of the 22 GWAS loci with P-value ≤ 1x10−6 tagged one particular coexpression module (4.0-fold enrichment, P-value 0.0029), and this module also had the greatest enrichment (3.4-fold enrichment, P-value 2.6 × 10−24) for allergic rhinitis-associated eSNPs (genetic variants associated with both gene expression and allergic rhinitis). The integrated GWAS, coexpression network, and eSNP results therefore supported this coexpression module as an allergic rhinitis module. Pathway analysis revealed that the module was enriched for mitochondrial pathways (8.6-fold enrichment, P-value 4.5 × 10−72).
Our results highlight mitochondrial pathways as a target for further investigation of allergic rhinitis mechanism and treatment. Our integrated approach can be applied to provide biologic context for GWAS of other diseases.
PMCID: PMC4127082  PMID: 25085501
Genome-wide association study; Allergic rhinitis; Coexpression network; Expression single-nucleotide polymorphism; Coexpression module; Pathway; Mitochondria; Hay fever; Allergy
4.  A genome-wide association study of bronchodilator response in asthmatics 
The pharmacogenomics journal  2013;14(1):41-47.
Reversibility of airway obstruction in response to β2-agonists is highly variable among asthmatics, which is partially attributed to genetic factors. In a genome-wide association study of acute bronchodilator response (BDR) to inhaled albuterol, 534,290 single nucleotide polymorphisms (SNPs) were tested in 403 white trios from the Childhood Asthma Management Program using five statistical models to determine the most robust genetic associations. The primary replication phase included 1397 polymorphisms in three asthma trials (pooled n=764). The second replication phase tested 13 SNPs in three additional asthma populations (n=241, n=215, and n=592). An intergenic SNP on chromosome 10, rs11252394, proximal to several excellent biological candidates, significantly replicated (p=1.98×10−7) in the primary replication trials. An intronic SNP (rs6988229) in the collagen (COL22A1) locus also provided strong replication signals (p=8.51×10−6). This study applied a robust approach for testing the genetic basis of BDR and identified novel loci associated with this drug response in asthmatics.
PMCID: PMC3706515  PMID: 23508266
pharmacogenetics; asthma; bronchodilator response; genome-wide association study; albuterol
5.  IL1B Polymorphisms Modulate Cystic Fibrosis Lung Disease 
Pediatric pulmonology  2009;44(6):580-593.
Rationale: Variability in pulmonary disease severity is found in patients with cystic fibrosis (CF) who have identical mutations in the CF transmembrane conductance regulator (CFTR) gene. We hypothesized that one factor accounting for heterogeneity in pulmonary disease severity is variation in the family of genes affecting the biology of interleukin-1 (IL-1), which impacts acquisition and maintenance of Pseudomonas aeruginosa infection in animal models of chronic infection. Methods: We genotyped 58 single nucleotide polymorphisms (SNPs) in the IL-1 gene cluster in 808 CF subjects from the University of North Carolina and Case Western Reserve University (UNC/CWRU) joint cohort. All were homozygous for ΔF508, and categories of “severe” (cases) or “mild” (control subjects) lung disease were defined by the lowest or highest quartile of forced expired volume (FEV1) for age in the CF population. After adjustment for age and gender, genotypic data were tested for association with lung disease severity. Odds ratios (ORs) comparing severe versus mild CF were also calculated for each genotype (with the homozygote major allele as the reference group) for all 58 SNPs. From these analyses, nine SNPs with a moderate effect size, OR ≤ 0.5or > 1.5, were selected for further testing. To replicate the case-control study results, we genotyped the same nine SNPs in a second population of CF parent-offspring trios (recruited from Children’s Hospital Boston), in which the offspring had similar pulmonary phenotypes. For the trio analysis, both family-based and population-based associations were performed. Results: SNPs rs1143634 and rs1143639 in the IL1B gene demonstrated a consistent association with lung disease severity categories (P < 0.10) and longitudinal analysis of lung disease severity (P < 0.10) in CF in both the case-control and family-based studies. In females, there was a consistent association (false discovery rate adjusted joint P-value < 0.06 for both SNPs) in both the analysis of lung disease severity in the UNC/CWRU cohort and the family-based analysis of affection status. Conclusion: Our findings suggest that IL1β is a clinically relevant modulator of CF lung disease.
PMCID: PMC3716579  PMID: 19431193
gene modifiers; cystic fibrosis; CFTR; IL-1 gene family
6.  IL10 Gene Polymorphisms Are Associated With Asthma Phenotypes in Children 
Genetic epidemiology  2004;26(2):155-165.
IL10 is an anti-inflammatory cytokine that has been found to have lower production in macrophages and mononuclear cells from asthmatics. Since reduced IL10 levels may influence the severity of asthma phenotypes, we examined IL10 single-nucleotide polymorphisms (SNPs) for association with asthma severity and allergy phenotypes as quantitative traits. Utilizing DNA samples from 518 Caucasian asthmatic children from the Childhood Asthma Management Program (CAMP) and their parents, we genotyped six IL10 SNPs: 3 in the promoter, 2 in introns, and one in the 3′ UTR. Using family-based association tests, each SNP was tested for association with asthma and allergy phenotypes individually. Population-based association analysis was performed with each SNP locus, the promoter haplotypes and the 6-loci haplotypes. The 3′ UTR SNP was significantly associated with FEV1 as a percent of predicted (FEV1PP) (P=0.0002) in both the family and population analyses. The promoter haplotype GCC was positively associated with IgE levels and FEV1PP (P=0.007 and 0.012, respectively). The promoter haplotype ATA was negatively associated with lnPC20 and FEV1PP (P=0.008 and 0.043, respectively). Polymorphisms in IL10 are associated with asthma phenotypes in this cohort. Further studies of variation in the IL10 gene may help elucidate the mechanism of asthma development in children.
PMCID: PMC3705717  PMID: 14748015
interleukin 10 (IL10); single nucleotide polymorphism (SNP); genetic association; family-based association test (FBAT); haplotype; promoter; 3′; untranslated region (3′UTR)
7.  Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma 
The New England journal of medicine  2011;365(13):1173-1183.
The response to treatment for asthma is characterized by wide interindividual variability, with a significant number of patients who have no response. We hypothesized that a genomewide association study would reveal novel pharmacogenetic determinants of the response to inhaled glucocorticoids.
We analyzed a small number of statistically powerful variants selected on the basis of a family-based screening algorithm from among 534,290 single-nucleotide polymorphisms (SNPs) to determine changes in lung function in response to inhaled glucocorticoids. A significant, replicated association was found, and we characterized its functional effects.
We identified a significant pharmacogenetic association at SNP rs37972, replicated in four independent populations totaling 935 persons (P = 0.0007), which maps to the glucocorticoid-induced transcript 1 gene (GLCCI1) and is in complete linkage disequilibrium (i.e., perfectly correlated) with rs37973. Both rs37972 and rs37973 are associated with decrements in GLCCI1 expression. In isolated cell systems, the rs37973 variant is associated with significantly decreased luciferase reporter activity. Pooled data from treatment trials indicate reduced lung function in response to inhaled glucocorticoids in subjects with the variant allele (P = 0.0007 for pooled data). Overall, the mean (± SE) increase in forced expiratory volume in 1 second in the treated subjects who were homozygous for the mutant rs37973 allele was only about one third of that seen in similarly treated subjects who were homozygous for the wild-type allele (3.2 ± 1.6% vs. 9.4 ± 1.1%), and their risk of a poor response was significantly higher (odds ratio, 2.36; 95% confidence interval, 1.27 to 4.41), with genotype accounting for about 6.6% of overall inhaled glucocorticoid response variability.
A functional GLCCI1 variant is associated with substantial decrements in the response to inhaled glucocorticoids in patients with asthma. (Funded by the National Institutes of Health and others; number, NCT00000575.)
PMCID: PMC3667396  PMID: 21991891
8.  Chromosome 17: Association of a large inversion polymorphism with corticosteroid response in asthma 
Pharmacogenetics and genomics  2008;18(8):733-737.
A 900-KB inversion exists within a large region of conserved linkage disequilibrium (LD) on chromosome 17. CRHR1 is located within the inversion region and associated with inhaled corticosteroid response in asthma. We hypothesized that CRHR1 variants are in LD with the inversion, supporting a potential role for natural selection in the genetic response to corticosteroids. We genotyped 6 single nucleotide polymorphisms (SNPs) spanning chr17:40,410,565–42,372,240, including 4 SNPs defining inversion status. Similar allele frequencies and strong LD were noted between the inversion and a CRHR1 SNP previously associated with lung function response to inhaled corticosteroids. Each inversion-defining SNP was strongly associated with inhaled corticosteroid response in adult asthma (p-values 0.002–0.005). The CRHR1 response to inhaled corticosteroids may thus be explained by natural selection resulting from inversion status or by long-range LD with another gene. Additional pharmacogenetic investigations into to regions of chromosomal diversity, including copy number variation and inversions, are warranted.
PMCID: PMC3225071  PMID: 18622266
CRHR1; tau haplotype; MAPT; inversion; asthma; corticosteroid; pharmacogenetics
9.  Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma 
Pharmacogenetics and genomics  2008;18(5):373-382.
Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.
We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers.
Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts.
We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
PMCID: PMC3208318  PMID: 18408560
Asthma; genetics; corticotrophin releasing hormone receptor 2; CRHR2; bronchodilator response; polymorphism; β2 adrenergic receptor agonist
10.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
11.  Asthma-susceptibility variants identified using probands in case-control and family-based analyses 
BMC Medical Genetics  2010;11:122.
Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades, most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using probands from a single population in both family-based and case-control association designs.
We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-wide association study designs: (1) probands were combined with publicly available population controls in a case-control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage replication process utilizing three independent populations to validate our primary findings.
We found that single nucleotide polymorphisms with similar case-control and family-based association results were more likely to replicate in the independent populations, than those with the smallest p-values in either the case-control or family-based design alone. The single nucleotide polymorphism that showed the strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed in human lung.
Our results suggest that using probands from family-based studies in case-control designs, and combining results of both family-based and case-control approaches, may be a way to augment our ability to find SNPs associated with asthma and other complex diseases.
PMCID: PMC2927535  PMID: 20698975
12.  Assessing the Reproducibility of Asthma Candidate Gene Associations, Using Genome-wide Data 
Rationale: Association studies have implicated many genes in asthma pathogenesis, with replicated associations between single-nucleotide polymorphisms (SNPs) and asthma reported for more than 30 genes. Genome-wide genotyping enables simultaneous evaluation of most of this variation, and facilitates more comprehensive analysis of other common genetic variation around these candidate genes for association with asthma.
Objectives: To use available genome-wide genotypic data to assess the reproducibility of previously reported associations with asthma and to evaluate the contribution of additional common genetic variation surrounding these loci to asthma susceptibility.
Methods: Illumina Human Hap 550Kv3 BeadChip (Illumina, San Diego, CA) SNP arrays were genotyped in 422 nuclear families participating in the Childhood Asthma Management Program. Genes with at least one SNP demonstrating prior association with asthma in two or more populations were tested for evidence of association with asthma, using family-based association testing.
Measurements and Main Results: We identified 39 candidate genes from the literature, using prespecified criteria. Of the 160 SNPs previously genotyped in these 39 genes, 10 SNPs in 6 genes were significantly associated with asthma (including the first independent replication for asthma-associated integrin β3 [ITGB3]). Evaluation of 619 additional common variants included in the Illumina 550K array revealed additional evidence of asthma association for 15 genes, although none were significant after adjustment for multiple comparisons.
Conclusions: We replicated asthma associations for a minority of candidate genes. Pooling genome-wide association study results from multiple studies will increase the power to appreciate marginal effects of genes and further clarify which candidates are true “asthma genes.”
PMCID: PMC2695495  PMID: 19264973
asthma; replication; single-nucleotide polymorphism; integrin β3; association
13.  ARG1 Is a Novel Bronchodilator Response Gene 
Rationale: Inhaled β-agonists are one of the most widely used classes of drugs for the treatment of asthma. However, a substantial proportion of patients with asthma do not have a favorable response to these drugs, and identifying genetic determinants of drug response may aid in tailoring treatment for individual patients.
Objectives: To screen variants in candidate genes in the steroid and β-adrenergic pathways for association with response to inhaled β-agonists.
Methods: We genotyped 844 single nucleotide polymorphisms (SNPs) in 111 candidate genes in 209 children and their parents participating in the Childhood Asthma Management Program. We screened the association of these SNPs with acute response to inhaled β-agonists (bronchodilator response [BDR]) using a novel algorithm implemented in a family-based association test that ranked SNPs in order of statistical power. Genes that had SNPs with median power in the highest quartile were then taken for replication analyses in three other asthma cohorts.
Measurements and Main Results: We identified 17 genes from the screening algorithm and genotyped 99 SNPs from these genes in a second population of patients with asthma. We then genotyped 63 SNPs from four genes with significant associations with BDR, for replication in a third and fourth population of patients with asthma. Evidence for association from the four asthma cohorts was combined, and SNPs from ARG1 were significantly associated with BDR. SNP rs2781659 survived Bonferroni correction for multiple testing (combined P value = 0.00048, adjusted P value = 0.047).
Conclusions: These findings identify ARG1 as a novel gene for acute BDR in both children and adults with asthma.
PMCID: PMC2556451  PMID: 18617639
pharmacogenetics; asthma; bronchodilator agents
14.  Platform dependence of inference on gene-wise and gene-set involvement in human lung development 
BMC Bioinformatics  2009;10:189.
With the recent development of microarray technologies, the comparability of gene expression data obtained from different platforms poses an important problem. We evaluated two widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung tissue as a function of gestational age.
We performed the comparison via sequence-based probe matching between the two platforms. "Significance grouping" was defined as a measure of comparability. Using both expression correlation and significance grouping as measures of comparability, we demonstrated that despite overall cross-platform differences at the single gene level, increased correlation between the two platforms was found in genes with higher expression level, higher probe overlap, and lower p-value. We also demonstrated that biological function as determined via KEGG pathways or GO categories is more consistent across platforms than single gene analysis.
We conclude that while the comparability of the platforms at the single gene level may be increased by increasing sample size, they are highly comparable ontologically even for subtle differences in a relatively small sample size. Biologically relevant inference should therefore be reproducible across laboratories using different platforms.
PMCID: PMC2711081  PMID: 19545372
15.  T-Bet Polymorphisms Are Associated with Asthma and Airway Hyperresponsiveness 
Rationale: T-bet (TBX21 or T-box 21) is a critical regulator of T-helper 1 lineage commitment and IFN-γ production. Knockout mice lacking T-bet develop airway hyperresponsiveness (AHR) to methacholine, peribronchial eosinophilic and lymphocytic inflammation, and increased type III collagen deposition below the bronchial epithelium basement membrane, reminiscent of both acute and chronic asthma histopathology. Little is known regarding the role of genetic variation surrounding T-bet in the development of human AHR.
Objectives: To assess the relationship between T-bet polymorphisms and asthma-related phenotypes using family-based association.
Methods: Single nucleotide polymorphism discovery was performed by resequencing the T-bet genomic locus in 30 individuals (including 22 patients with asthma). Sixteen variants were genotyped in 580 nuclear families ascertained through offspring with asthma from the Childhood Asthma Management Program clinical trial. Haplotype patterns were determined from this genotype data. Family-based tests of association were performed with asthma, AHR, lung function, total serum immunoglobulin E, and blood eosinophil levels.
Main Results: We identified 24 variants. Evidence of association was observed between c.−7947 and asthma in white families using both additive (p = 0.02) or dominant models (p = 0.006). c.−7947 and three other variants were also associated with AHR (log-methacholine PC20, p = 0.02–0.04). Haplotype analysis suggested that an AHR locus is in linkage disequilibrium with variants in the 3′UTR. Evidence of association of AHR with c.−7947, but not with other 3′UTR SNPs, was replicated in an independent cohort of adult males with AHR.
Conclusions: These data suggest that T-bet variation contributes to airway responsiveness in asthma.
PMCID: PMC2662983  PMID: 16179640
immunoglobulin E; single nucleotide polymorphism; T-box; TBX21
16.  Extended Haplotype in the Tumor Necrosis Factor Gene Cluster Is Associated with Asthma and Asthma-related Phenotypes 
Rationale: Tumor necrosis factor is a proinflammatory cytokine found in increased concentrations in asthmatic airways. The TNF-α (TNF) and lymphotoxin-α (LTA) genes belong to the TNF gene superfamily located within the human major histocompatibility complex on chromosome 6p in a region repeatedly linked to asthma. The TNF position –308 and LTA NcoI polymorphisms are believed to influence TNF transcription and secretion, respectively. Objectives: This study sought to determine whether polymorphisms in TNF or LTA, or in TNF-LTA haplotypes, are associated with asthma and asthma phenotypes. Methods: We genotyped the TNF –308 and LTA NcoI polymorphisms, and two other haplotype-tagging polymorphisms in the TNF and LTA genes, in 708 children with mild to moderate asthma enrolled in the Childhood Asthma Management Program and in their parents. Using an extension of the family-based association tests in the PBAT program, each polymorphism was tested for association with asthma, age at onset of asthma, and time series data on baseline FEV1 % predicted, postbronchodilator FEV1 % predicted, body mass index, and log of PC20. Measurements and Main Results: Although no associations were found for the individual single-nucleotide polymorphisms, the haplotype analysis found the LTA NcoI_G/LTA 4371T/TNF –308G/TNF 1078G haplotype to be associated with asthma and with all five phenotype groups. Conclusions: We conclude that it is unlikely that the TNF –308 or LTA NcoI polymorphisms influence asthma susceptibility individually, but that this haplotype of variants may be functional or may be in linkage disequilibrium with other functional single-nucleotide polymorphisms.
PMCID: PMC2718550  PMID: 15976383
asthma; haplotypes; lymphotoxin-α polymorphism; tumor necrosis factor
17.  Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system 
The text descriptions in electronic medical records are a rich source of information. We have developed a Health Information Text Extraction (HITEx) tool and used it to extract key findings for a research study on airways disease.
The principal diagnosis, co-morbidity and smoking status extracted by HITEx from a set of 150 discharge summaries were compared to an expert-generated gold standard.
The accuracy of HITEx was 82% for principal diagnosis, 87% for co-morbidity, and 90% for smoking status extraction, when cases labeled "Insufficient Data" by the gold standard were excluded.
We consider the results promising, given the complexity of the discharge summaries and the extraction tasks.
PMCID: PMC1553439  PMID: 16872495
18.  Polymorphisms in signal transducer and activator of transcription 3 and lung function in asthma 
Respiratory Research  2005;6(1):52.
Identifying genetic determinants for lung function is important in providing insight into the pathophysiology of asthma. Signal transducer and activator of transcription 3 is a transcription factor latent in the cytoplasm; the gene (STAT3) is activated by a wide range of cytokines, and may play a role in lung development and asthma pathogenesis.
We genotyped six single nucleotide polymorphisms (SNPs) in the STAT3 gene in a cohort of 401 Caucasian adult asthmatics. The associations between each SNP and forced expiratory volume in 1 second (FEV1), as a percent of predicted, at the baseline exam were tested using multiple linear regression models. Longitudinal analyses involving repeated measures of FEV1 were conducted with mixed linear models. Haplotype analyses were conducted using imputed haplotypes. We completed a second association study by genotyping the same six polymorphisms in a cohort of 652 Caucasian children with asthma.
We found that three polymorphisms were significantly associated with baseline FEV1: homozygotes for the minor alleles of each polymorphism had lower FEV1 than homozygotes for the major alleles. Moreover, these associations persisted when we performed an analysis on repeated measures of FEV1 over 8 weeks. A haplotypic analysis based on the six polymorphisms indicated that two haplotypes were associated with baseline FEV1. Among the childhood asthmatics, one polymorphism was associated with both baseline FEV1 and the repeated measures of FEV1 over 4 years.
Our results indicate that genetic variants in STAT3, independent of asthma treatment, are determinants of FEV1 in both adults and children with asthma, and suggest that STAT3 may participate in inflammatory pathways that have an impact on level of lung function.
PMCID: PMC1180474  PMID: 15935090

Results 1-18 (18)