PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Vitamin D related genes in lung development and asthma pathogenesis 
BMC Medical Genomics  2013;6:47.
Background
Poor maternal vitamin D intake is a risk factor for subsequent childhood asthma, suggesting that in utero changes related to vitamin D responsive genes might play a crucial role in later disease susceptibility. We hypothesized that vitamin D pathway genes are developmentally active in the fetal lung and that these developmental genes would be associated with asthma susceptibility and regulation in asthma.
Methods
Vitamin D pathway genes were derived from PubMed and Gene Ontology surveys. Principal component analysis was used to identify characteristic lung development genes.
Results
Vitamin D regulated genes were markedly over-represented in normal human (odds ratio OR 2.15, 95% confidence interval CI: 1.69-2.74) and mouse (OR 2.68, 95% CI: 2.12-3.39) developing lung transcriptomes. 38 vitamin D pathway genes were in both developing lung transcriptomes with >63% of genes more highly expressed in the later than earlier stages of development. In immortalized B-cells derived from 95 asthmatics and their unaffected siblings, 12 of the 38 (31.6%) vitamin D pathway lung development genes were significantly differentially expressed (OR 3.00, 95% CI: 1.43-6.21), whereas 11 (29%) genes were significantly differentially expressed in 43 control versus vitamin D treated immortalized B-cells from Childhood Asthma Management Program subjects (OR 2.62, 95% CI: 1.22-5.50). 4 genes, LAMP3, PIP5K1B, SCARB2 and TXNIP were identified in both groups; each displays significant biologic plausibility for a role in asthma.
Conclusions
Our findings demonstrate a significant association between early lung development and asthma–related phenotypes for vitamin D pathway genes, supporting a genomic mechanistic basis for the epidemiologic observations relating maternal vitamin D intake and childhood asthma susceptibility.
doi:10.1186/1755-8794-6-47
PMCID: PMC4228235  PMID: 24188128
Vitamin D; Cholecalciferol; Lung development; Asthma; Fetal programming
2.  Expression analysis of asthma candidate genes during human and murine lung development 
Respiratory Research  2011;12(1):86.
Background
Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.
Objective
To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.
Methods
Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.
Results
In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development.
Conclusions
Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.
doi:10.1186/1465-9921-12-86
PMCID: PMC3141421  PMID: 21699702
Asthma; Development; Expression; Genetics; Lung
3.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
doi:10.1164/rccm.200907-1009OC
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
4.  Transcriptomic Analysis of Human Lung Development 
Rationale: Current understanding of the molecular regulation of lung development is limited and derives mostly from animal studies.
Objectives: To define global patterns of gene expression during human lung development.
Methods: Genome-wide expression profiling was used to measure the developing lung transcriptome in RNA samples derived from 38 normal human lung tissues at 53 to 154 days post conception. Principal component analysis was used to characterize global expression variation and to identify genes and bioontologic attributes contributing to these variations. Individual gene expression patterns were verified by quantitative reverse transcriptase–polymerase chain reaction analysis.
Measurements and Main Results: Gene expression analysis identified attributes not previously associated with lung development, such as chemokine-immunologic processes. Lung characteristics attributes (e.g., surfactant function) were observed at an earlier-than-anticipated age. We defined a 3,223 gene developing lung characteristic subtranscriptome capable of describing a majority of the process. In gene expression space, the samples formed a time-contiguous trajectory with transition points correlating with histological stages and suggesting the existence of novel molecular substages. Induction of surfactant gene expression characterized a pseudoglandular “molecular phase” transition. Individual gene expression patterns were independently validated. We predicted the age of independent human lung transcriptome profiles with a median absolute error of 5 days, supporting the validity of the data and modeling approach.
Conclusions: This study extends our knowledge of key gene expression patterns and bioontologic attributes underlying early human lung developmental processes. The data also suggest the existence of molecular phases of lung development.
doi:10.1164/rccm.200907-1063OC
PMCID: PMC2797628  PMID: 19815808
microarrays; surfactant; principal component analysis
5.  Platform dependence of inference on gene-wise and gene-set involvement in human lung development 
BMC Bioinformatics  2009;10:189.
Background
With the recent development of microarray technologies, the comparability of gene expression data obtained from different platforms poses an important problem. We evaluated two widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung tissue as a function of gestational age.
Results
We performed the comparison via sequence-based probe matching between the two platforms. "Significance grouping" was defined as a measure of comparability. Using both expression correlation and significance grouping as measures of comparability, we demonstrated that despite overall cross-platform differences at the single gene level, increased correlation between the two platforms was found in genes with higher expression level, higher probe overlap, and lower p-value. We also demonstrated that biological function as determined via KEGG pathways or GO categories is more consistent across platforms than single gene analysis.
Conclusion
We conclude that while the comparability of the platforms at the single gene level may be increased by increasing sample size, they are highly comparable ontologically even for subtle differences in a relatively small sample size. Biologically relevant inference should therefore be reproducible across laboratories using different platforms.
doi:10.1186/1471-2105-10-189
PMCID: PMC2711081  PMID: 19545372

Results 1-5 (5)