PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Genome-wide association analysis of circulating vitamin D levels in children with asthma 
Human genetics  2012;131(9):1495-1505.
Vitamin D deficiency is becoming more apparent in many populations. Genetic factors may play a role in the maintenance of vitamin D levels. The objective of this study was to perform a genome-wide analysis (GWAS) of vitamin D levels, including replication of prior GWAS results. We measured 25-hydroxyvitamin D (25(OH)D) levels in serum collected at the time of enrollment and at year 4 in 572 Caucasian children with asthma, who were part of a multi-center clinical trial, the Childhood Asthma Management Program. Replication was performed in a second cohort of 592 asthmatics from Costa Rica and a third cohort of 516 Puerto Rican asthmatics. In addition, we attempted replication of three SNPs that were previously identified in a large GWAS of Caucasian individuals. The setting included data from a clinical trial of childhood asthmatics and two cohorts of asthmatics recruited for genetic studies of asthma. The main outcome measure was circulating 25(OH)D levels. The 25(OH)D levels at the two time-points were only modestly correlated with each other (intraclass correlation coefficient = 0.33) in the CAMP population. We identified SNPs that were nominally associated with 25(OH)D levels at two time-points in CAMP, and replicated four SNPs in the Costa Rican cohort: rs11002969, rs163221, rs1678849, and rs4864976. However, these SNPs were not significantly associated with 25(OH)D levels in a third population of Puerto Rican asthmatics. We were able to replicate the SNP with the strongest effect, previously reported in a large GWAS: rs2282679 (GC), and we were able to replicate another SNP, rs10741657 (CYP2R1), to a lesser degree. We were able to replicate two of three prior significant findings in a GWAS of 25(OH)D levels. Other SNPs may be additionally associated with 25(OH)D levels in certain populations.
doi:10.1007/s00439-012-1185-z
PMCID: PMC3648789  PMID: 22673963
2.  Genome-wide association study reveals class I MHC–restricted T cell–associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations 
Background
It has recently been shown that vitamin D deficiency can increase asthma development and severity and that variations in vitamin D receptor genes are associated with asthma susceptibility.
Objective
We sought to find genetic factors that might interact with vitamin D levels to affect the risk of asthma exacerbation. Methods: We conducted a genome-wide study of gene–vitamin D interaction on asthma exacerbations using population-based and family-based approaches on 403 subjects and trios from the Childhood Asthma Management Program. Twenty-three polymorphisms with significant interactions were studied in a replication analysis in 584 children from a Costa Rican cohort. Results: We identified 3 common variants in the class I MHC–restricted T cell–associated molecule gene (CRTAM) that were associated with an increased rate of asthma exacerbations based on the presence of a low circulating vitamin D level. These results were replicated in a second independent population (unadjusted combined interaction, P =.00028–.00097; combined odds ratio, 3.28–5.38). One variant, rs2272094, is a nonsynonymous coding polymorphism of CRTAM. Functional studies on cell lines confirmed the interaction of vitamin D and rs2272094 on CRTAM expression. CRTAM is highly expressed in activated human CD8+ and natural killer T cells, both of which have been implicated in asthmatic patients.
Conclusion
The findings highlight an important gene-environment interaction that elucidates the role of vitamin D and CD8+ and natural killer T cells in asthma exacerbation in a genome-wide gene-environment interaction study that has been replicated in an independent population. The results suggest the potential importance of maintaining adequate vitamin D levels in subsets of high-risk asthmatic patients.
doi:10.1016/j.jaci.2011.09.034
PMCID: PMC3360942  PMID: 22051697
Gene-environment interaction; genome-wide association study; vitamin D; asthma exacerbation
3.  Meta-analysis of Genome-wide Association Studies of Asthma In Ethnically Diverse North American Populations 
Torgerson, Dara G. | Ampleford, Elizabeth J. | Chiu, Grace Y. | Gauderman, W. James | Gignoux, Christopher R. | Graves, Penelope E. | Himes, Blanca E. | Levin, Albert M. | Mathias, Rasika A. | Hancock, Dana B. | Baurley, James W. | Eng, Celeste | Stern, Debra A. | Celedón, Juan C. | Rafaels, Nicholas | Capurso, Daniel | Conti, David V. | Roth, Lindsey A. | Soto-Quiros, Manuel | Togias, Alkis | Li, Xingnan | Myers, Rachel A. | Romieu, Isabelle | Van Den Berg, David J. | Hu, Donglei | Hansel, Nadia N. | Hernandez, Ryan D. | Israel, Elliott | Salam, Muhammad T. | Galanter, Joshua | Avila, Pedro C. | Avila, Lydiana | Rodriquez-Santana, Jose R. | Chapela, Rocio | Rodriguez-Cintron, William | Diette, Gregory B. | Adkinson, N. Franklin | Abel, Rebekah A. | Ross, Kevin D. | Shi, Min | Faruque, Mezbah U. | Dunston, Georgia M. | Watson, Harold R. | Mantese, Vito J. | Ezurum, Serpil C. | Liang, Liming | Ruczinski, Ingo | Ford, Jean G. | Huntsman, Scott | Chung, Kian Fan | Vora, Hita | Li, Xia | Calhoun, William J. | Castro, Mario | Sienra-Monge, Juan J. | del Rio-Navarro, Blanca | Deichmann, Klaus A. | Heinzmann, Andrea | Wenzel, Sally E. | Busse, William W. | Gern, James E. | Lemanske, Robert F. | Beaty, Terri H. | Bleecker, Eugene R. | Raby, Benjamin A. | Meyers, Deborah A. | London, Stephanie J. | Gilliland, Frank D. | Burchard, Esteban G. | Martinez, Fernando D. | Weiss, Scott T. | Williams, L. Keoki | Barnes, Kathleen C. | Ober, Carole | Nicolae, Dan L.
Nature genetics  2011;43(9):887-892.
Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies (GWAS) of asthma in 5,416 asthma cases representing European Americans, African Americans/African Caribbeans, and Latinos, and replicated five regions among the most significant signals in 12,649 individuals from the same ethnic groups. Four were at previously reported loci on 17q21, and near the IL1RL1, TSLP, and IL33, genes, but we report for the first time that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a novel association with asthma in the PYHIN1, gene that was specific to individuals of African descent (p=3.9×10−9). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma.
doi:10.1038/ng.888
PMCID: PMC3445408  PMID: 21804549
4.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
doi:10.1164/rccm.200907-1009OC
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
5.  Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma 
Background
Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene (TSLP) in the pathogenesis of AR has not been studied.
Objective
To test for associations between variants in TSLP, TSLP-related genes, and AR in children with asthma.
Methods
We genotyped 15 single nucleotide polymorphisms (SNPs) in TSLP, OX40L, IL7R, and RXRα in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for TSLP, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions.
Results
Across the three cohorts, the T allele of TSLP SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10-4). Our findings were significant after accounting for multiple comparisons. SNPs in OX40L, IL7R, and RXRα were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs.
Conclusions
TSLP SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for TSLP in the pathogenesis of AR in children with asthma.
doi:10.1186/1476-7961-9-1
PMCID: PMC3032752  PMID: 21244681
6.  TSLP Polymorphisms are Associated with Asthma in a Sex-Specific Fashion 
Allergy  2010;65(12):1566-1575.
Background
Single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) have been associated with IgE (in girls) and asthma (in general). We sought to determine whether TSLP SNPs are associated with asthma in a sex-specific fashion.
Methods
We conducted regular and sex-stratified analyses of association between SNPs in TSLP and asthma in families of asthmatic children in Costa Rica. Significant findings were replicated in white and African-American participants in the Childhood Asthma Management Program, in African Americans in the Genomic Research on Asthma in the African Diaspora study, in whites and Hispanics in the Children’s Health Study, and in whites in the Framingham Heart Study (FHS).
Main Results
Two SNPs in TSLP (rs1837253 and rs2289276) were significantly associated with a reduced risk of asthma in combined analyses of all cohorts (p values of 2×10−5 and 1×10−5, respectively). In a sex-stratified analysis, the T allele of rs1837253 was significantly associated with a reduced risk of asthma in males only (p= 3×10−6). Alternately, the T allele of rs2289276 was significantly associated with a reduced risk of asthma in females only (p= 2×10−4). Findings for rs2289276 were consistent in all cohorts except the FHS.
Conclusions
TSLP variants are associated with asthma in a sex-specific fashion.
doi:10.1111/j.1398-9995.2010.02415.x
PMCID: PMC2970693  PMID: 20560908
asthma; genetic association; sex-specific; thymic stromal lymphopoietin; TSLP
7.  Asthma-susceptibility variants identified using probands in case-control and family-based analyses 
BMC Medical Genetics  2010;11:122.
Background
Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades, most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using probands from a single population in both family-based and case-control association designs.
Methods
We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-wide association study designs: (1) probands were combined with publicly available population controls in a case-control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage replication process utilizing three independent populations to validate our primary findings.
Results
We found that single nucleotide polymorphisms with similar case-control and family-based association results were more likely to replicate in the independent populations, than those with the smallest p-values in either the case-control or family-based design alone. The single nucleotide polymorphism that showed the strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed in human lung.
Conclusions
Our results suggest that using probands from family-based studies in case-control designs, and combining results of both family-based and case-control approaches, may be a way to augment our ability to find SNPs associated with asthma and other complex diseases.
doi:10.1186/1471-2350-11-122
PMCID: PMC2927535  PMID: 20698975
8.  MMP12, Lung Function, and COPD in High-Risk Populations 
The New England journal of medicine  2009;361(27):2599-2608.
BACKGROUND
Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups.
METHODS
We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV1]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV1 and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD.
RESULTS
The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [−82A→G]) was positively associated with FEV1 in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2×10−6). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P = 0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P = 0.005) and among participants in a family-based study of early-onset COPD (P = 0.006).
CONCLUSIONS
The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.
doi:10.1056/NEJMoa0904006
PMCID: PMC2904064  PMID: 20018959
9.  Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica 
Rationale: Maternal vitamin D intake during pregnancy has been inversely associated with asthma symptoms in early childhood. However, no study has examined the relationship between measured vitamin D levels and markers of asthma severity in childhood.
Objectives: To determine the relationship between measured vitamin D levels and both markers of asthma severity and allergy in childhood.
Methods: We examined the relation between 25-hydroxyvitamin D levels (the major circulating form of vitamin D) and markers of allergy and asthma severity in a cross-sectional study of 616 Costa Rican children between the ages of 6 and 14 years. Linear, logistic, and negative binomial regressions were used for the univariate and multivariate analyses.
Measurements and Main Results: Of the 616 children with asthma, 175 (28%) had insufficient levels of vitamin D (<30 ng/ml). In multivariate linear regression models, vitamin D levels were significantly and inversely associated with total IgE and eosinophil count. In multivariate logistic regression models, a log10 unit increase in vitamin D levels was associated with reduced odds of any hospitalization in the previous year (odds ratio [OR], 0.05; 95% confidence interval [CI], 0.004–0.71; P = 0.03), any use of antiinflammatory medications in the previous year (OR, 0.18; 95% CI, 0.05–0.67; P = 0.01), and increased airway responsiveness (a ≤8.58-μmol provocative dose of methacholine producing a 20% fall in baseline FEV1 [OR, 0.15; 95% CI, 0.024–0.97; P = 0.05]).
Conclusions: Our results suggest that vitamin D insufficiency is relatively frequent in an equatorial population of children with asthma. In these children, lower vitamin D levels are associated with increased markers of allergy and asthma severity.
doi:10.1164/rccm.200808-1361OC
PMCID: PMC2675563  PMID: 19179486
10.  Variants in TGFB1, Dust Mite Exposure, and Disease Severity in Children with Asthma 
Rationale: Polymorphisms in the gene for transforming growth factor-β1 (TGFB1) have been associated with asthma, but not with airway responsiveness or disease exacerbations in subjects with asthma.
Objectives: To test for association between single nucleotide polymorphisms (SNPs) in TGFB1 and markers of asthma severity in childhood.
Methods: We tested for the association between nine SNPs in TGFB1 and indicators of asthma severity (lung function, airway responsiveness, and disease exacerbations) in two cohorts: 416 Costa Rican parent-child trios and 465 families of non-Hispanic white children in the Childhood Asthma Management Program (CAMP). We also tested for the interaction between these polymorphisms and exposure to dust mite allergen on asthma severity.
Measurements and Main Results: The A allele of promoter SNP rs2241712 was associated with increased airway responsiveness in Costa Rica (P = 0.0006) and CAMP (P = 0.005), and the C allele of an SNP in the promoter region (rs1800469) was associated with increased airway responsiveness in both cohorts (P ≤ 0.01). Dust mite exposure modified the effect of the C allele of exonic SNP rs1800471 on airway responsiveness (P = 0.03 for interactions in both cohorts). The T allele of a coding SNP (rs1982073) was associated with a reduced risk of asthma exacerbations in Costa Rica (P = 0.009) and CAMP (P = 0.005). Dust mite exposure also significantly modified the effect of the A allele of the promoter SNP rs2241712 on asthma exacerbations in both cohorts.
Conclusions: SNPs in TGFB1 are associated with airway responsiveness and disease exacerbations in children with asthma. Moreover, dust mite exposure may modify the effect of TGFB1 SNPs on airway responsiveness and asthma exacerbations.
doi:10.1164/rccm.200808-1268OC
PMCID: PMC2648908  PMID: 19096005
airway responsiveness; asthma; dust mite allergen; single nucleotide polymorphisms; transforming growth factor-β1
11.  Comprehensive Testing of Positionally Cloned Asthma Genes in Two Populations 
Rationale: Replication of gene-disease associations has become a requirement in complex trait genetics.
Objectives: In studies of childhood asthma from two different ethnic groups, we attempted to replicate associations with five potential asthma susceptibility genes previously identified by positional cloning.
Methods: We analyzed two family-based samples ascertained through an asthmatic proband: 497 European-American children from the Childhood Asthma Management Program and 439 Hispanic children from the Central Valley of Costa Rica. We genotyped 98 linkage disequilibrium–tagging single-nucleotide polymorphisms (SNPs) in five genes: ADAM33, DPP10, GPR154 (HUGO name: NPSR1), HLA-G, and the PHF11 locus (includes genes SETDB2 and RCBTB1). SNPs were tested for association with asthma and two intermediate phenotypes: airway hyperresponsiveness and total serum immunoglobulin E levels.
Measurements and Main Results: Despite differing ancestries, linkage disequilibrium patterns were similar in both cohorts. Of the five evaluated genes, SNP-level replication was found only for GPR154 (NPSR1). In this gene, three SNPs were associated with asthma in both cohorts, although the opposite alleles were associated in either study. Weak evidence for locus-level replication with asthma was found in the PHF11 locus, although there was no overlap in the associated SNP across the two cohorts. No consistent associations were observed for the three other genes.
Conclusions: These results provide some further support for the role of genetic variation in GPR154 (NPSR1) and PHF11 in asthma susceptibility and also highlight the challenges of replicating genetic associations in complex traits such as asthma, even for genes identified by linkage analysis.
doi:10.1164/rccm.200704-592OC
PMCID: PMC2048676  PMID: 17702965
bronchial hyperreactivity; immunoglobulin E; linkage disequilibrium; NPSR1; single-nucleotide polymorphism
12.  The Association of a SNP Upstream of INSIG2 with Body Mass Index is Reproduced in Several but Not All Cohorts 
PLoS Genetics  2007;3(4):e61.
A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large cohorts from eight populations across multiple ethnicities (total n = 16,969). We tested this variant for association with BMI in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a significant (p < 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this association in both unrelated (p = 0.046) and family-based (p = 0.004) samples. The estimated risk conferred by this allele is small, and could easily be masked by small sample size, population stratification, or other confounders. These validation studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples.
Author Summary
Obesity is an epidemic in the United States of America and developing world, portending an epidemic of related diseases such as diabetes and heart disease. While diet and lifestyle contribute to obesity, half of the population variation in body mass index, a common measure of obesity, is determined by inherited factors. Many studies have reported that common sequence variants in genes are associated with an increased risk for obesity, yet most of these are not reproducible in other study cohorts, suggesting that some are false. Recently, Herbert et al. reported a slightly increased risk of obesity for people carrying two copies of the minor allele at a common variant near INSIG2. We present our attempts to further evaluate this potential association with obesity in additional populations. We find evidence of increased risk of obesity for people carrying two copies of the minor allele in five out of nine cohorts tested, using both family- and population-based testing. We indicate possible reasons for the varied results, with the hope of encouraging a combined analysis across study cohorts to more precisely define the effect of this INSIG2 gene variant.
doi:10.1371/journal.pgen.0030061
PMCID: PMC1857727  PMID: 17465681

Results 1-12 (12)