PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  The effect of robenacoxib on the concentration of C-reactive protein in synovial fluid from dogs with osteoarthritis 
Background
Robenacoxib is a novel and highly selective inhibitor of COX-2 in dogs and cats and because of its acidic nature is regarded as being tissue-selective. Thirty four dogs with stifle osteoarthritis secondary to failure of the cranial cruciate ligament were recruited into this study. Lameness, radiographic features, synovial cytology and C-reactive protein concentrations in serum and synovial fluid were assessed before and 28 days after commencing a course of Robenacoxib at a dose of 1 mg/kg SID.
Results
There was a significant reduction in the lameness score (P < 0.01) and an increase in the radiographic score (P < 0.05) between pre- and post-treatment assessments. There was no difference between pre- (median 1.49 mg/l; Q1-Q3 0.56-4.24 mg/L) and post – (1.10 mg/L; 0.31-1.78 mg/L) treatment serum C-reactive protein levels although synovial fluid levels were significantly reduced (pre- : 0.44 mg/L; 0.23-1.62 mg/L; post- : 0.17 mg/L; 0.05-0.49 mg/L) (P < 0.05). There was no correlation between C-reactive protein concentrations in serum and matched synovial fluid samples.
Conclusions
Robenacoxib proved effective in reducing lameness in dogs with failure of the cranial cruciate ligament and osteoarthritis of the stifle joint. The drug also reduced levels of C-reactive protein in the synovial fluid taken from the affected stifle joint. Robenacoxib appears to reduce articular inflammation as assessed by C-reactive protein which supports the concept that Robenacoxib is a tissue-selective non-steroidal anti-inflammatory drug.
doi:10.1186/1746-6148-9-42
PMCID: PMC3610148  PMID: 23452411
Stifle; Osteoarthritis; Cruciate disease; C-reactive protein; Synovial fluid; Robenacoxib
2.  Maternal undernutrition and the ovine acute phase response to vaccination 
Background
The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin (Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy (Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P™ following primary and secondary vaccination.
Results
The Hp and SAA concentrations were significantly lower at the time of vaccination (day 8–14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response.
Conclusion
Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual APP.
doi:10.1186/1746-6148-4-1
PMCID: PMC2233616  PMID: 18197966
3.  Acute phase protein response in an experimental model of ovine caseous lymphadenitis 
Background
Caseous lymphadenitis (CLA) is a disease of small ruminants caused by Corynebacterium pseudotuberculosis. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP) such as haptoglobin (Hp) serum amyloid A (SAA) and α1 acid glycoprotein (AGP) are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles.
Results
The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 105 cells of C. pseudotuberculosis showed significant increases (P < 0.05) compared to 3 unchallenged control sheep. By day 7 post infection. (p.i.) the Hp and SAA concentrations reached mean (± SEM) values of 1.65 ± 0.21 g/L and 18.1 ± 5.2 mg/L respectively. Thereafter, their concentrations fell with no significant difference to those of the control sheep by day 18 p.i.. In contrast, the serum AGP concentration in infected sheep continued to rise to a peak of 0.38 ± 0.05 g/L on day 13 p.i., after which a slow decline occurred, although the mean concentration remained significantly higher (P < 0.05) than the control group up to 29 days p.i.. Specific IgG to phospholidase D of C. pseudotuberculosis became detectable at 11 days p.i. and continued to rise throughout the experiment.
Conclusion
The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.
doi:10.1186/1746-6148-3-35
PMCID: PMC2235841  PMID: 18093286

Results 1-3 (3)