Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans 
PLoS Genetics  2010;6(9):e1001089.
MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes.
Author Summary
miRNAs are small RNAs found in many multi-cellular species that inhibit gene expression. Many of them play important roles in cancer and cell fate determination, but the function of most miRNAs is uncertain. Using live cell imaging and automated expression analysis, we found a miRNA gene, mir-57, is expressed in a position rather than tissue dependent way. Hox genes also regulate cell fate patterning along anterior-posterior (a-p) axis across different tissues. By investigating interactions between genes of these classes expressed in mir-57 expressing cells, we demonstrated by both genetic analysis and gene expression assays that a negative feedback loop between a posterior Hox gene, nob-1, and mir-57 regulates posterior cell fate determination in C. elegans. On the one hand, the Hox gene is required for normal activation of mir-57 expression, and on the other, the Hox gene functions as a direct target of and is repressed by the miRNA. Given the conservation of the two genes, a negative feedback loop between Hox and miRNA genes might be broadly used across species to regulate cell fate along the a-p axis. Detailed expression analysis may provide a general way to dissect the regulatory role of miRNAs.
PMCID: PMC2932687  PMID: 20824072
2.  Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response 
PLoS Genetics  2010;6(2):e1000848.
Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.
Author Summary
The C. elegans transcription factor PHA-4 is a member of the highly conserved FOXA family of transcription factors. These factors act as master regulators of organ development by controlling how genes are turned off and on as tissues are formed. Additionally they regulate genes in response to nutrient levels and control both longevity and survival of the organism. However, the extent to which these factors control similar or distinct gene targets for each of these functions is unknown. For this reason, we have used the technique of chromatin immunoprecipitation followed by deep sequencing (ChIP–Seq), to define the target binding sites of PHA-4 on a genome-wide scale, when it is either functioning as an organ identity regulator or in response to environmental stress. Our data clearly demonstrate distinct sets of biologically relevant target genes for the transcription factor PHA-4 under these two different conditions. Not only have we defined PHA-4 targets, but we established an experimental ChIP–Seq pipeline to facilitate the identification of binding sites for many transcription factors in the future.
PMCID: PMC2824807  PMID: 20174564
3.  Comparative Analysis of Embryonic Cell Lineage between Caenorhabditis briggsae and C. elegans 
Developmental biology  2007;314(1):93-99.
Comparative genomic analysis of important signaling pathways in C. briggase and C. elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally-equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.
PMCID: PMC2696483  PMID: 18164284
C. briggsae; C. elegans; embryo; cell lineage; signaling pathway

Results 1-3 (3)